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Abstract 

 Graph vertex coloring with a fixed number of colors is a well-known, extensively studied NP-

complete problem. The most effective approaches to solving this challenge have been hybrid 

algorithms, such as memetic algorithms or quantum annealing, which combine the strengths of 

local search within population-based frameworks. In this paper, we address a production 

scheduling problem involving three distinct car models-XUV, Sedan, and Mini XUV requiring 

assignment to two painting lines and two assembly lines. The objective is to minimize total 

production time while adhering to various operational constraints such as model compatibility 

for painting lines, specific assembly line restrictions, and differing painting and assembly times 

for each model. To solve this problem efficiently, we propose a solution based on the Memetic 

Graph Coloring Algorithm. Our approach incorporates a graph-based representation of the 

problem, where nodes represent tasks (painting and assembly of individual car units) and edges 

represent incompatibilities or resource conflicts. The Memetic Algorithm optimizes the 

assignment of tasks to time slots, leveraging both crossover and mutation operations to explore 

feasible solutions. Specifically, mutation is employed to randomly alter schedules by swapping 

tasks within slots, which introduces diversity and enhances the search process. 

 

Keywords: Production Scheduling, Memetic Algorithm, Graph Coloring, Car Manufacturing, 

Optimization, Idle Time, Scheduling Constraints. 

1. Introduction 

Efficient production scheduling is a critical factor in optimizing the manufacturing process, 

particularly in industries with complex product lines, such as the automotive industry. In multi-

model production systems, assigning tasks such as painting and assembly to limited resources 

(e.g., painting lines, assembly lines) requires careful consideration of model compatibility, 

operational constraints, and production times. Failure to address these constraints leads to 

inefficient use of resources, increased idle time, and extended production durations. Traditional 

scheduling methods often struggle to achieve optimal solutions under such complex conditions. 

In response, metaheuristic approaches, particularly evolutionary algorithms, have gained 

significant attention for their ability to solve complex scheduling problems. One such approach 

is the Memetic Algorithm (MA), which combines the global search capability of genetic 

algorithms with local optimization strategies, offering a powerful tool for solving combinatorial 

optimization problems. Memetic algorithms have been successfully applied to various scheduling 
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problems, including job-shop scheduling, flow-shop scheduling, and timetabling. These works 

highlight the ability of memetic algorithms to balance exploration and exploitation in the solution 

space, enabling the discovery of near-optimal solutions efficiently. 

In the context of graph coloring, where nodes represent tasks and edges represent conflicts or 

resource constraints, several studies have demonstrated the effectiveness of this model in 

scheduling problems. Morgenstern and Shapiro showed how graph coloring could be applied to 

exam scheduling [1]. 

Despite these advances, few studies have addressed the specific challenges encountered in 

automotive production scheduling, where tasks are constrained by model-specific requirements 

and resource limitations. Models like the XUV, Sedan, and Mini XUV have varying painting and 

assembly times, and there are strict restrictions on which lines can handle which models. For 

example, XUV and Sedan cannot be painted on the same line, and each model has different 

assembly line requirements. Existing solutions often fail to efficiently minimize total production 

time while managing these constraints.  

The graph vertex coloring problem (GVCP) consists in finding the minimum number of colors, 

called chromatic number χ(G), required to color the graph G while respecting these binary 

constraints GVCP is a well-documented and much-studied problem because this simple 

formalization can be applied to various issues such as frequency assignment problems (Aardal et 

al. ,  Dib et al Comprehensive surveys on the Generalized Vertex Coloring Problem (GVCP) can 

be found in the works [2,3]. Galinier and Hertz, Galinier et al. and Malaguti and Toth first two 

studies categorize heuristics based on the selected search space [4,7,16]. Hertz et al variable Space 

Search is particularly notable for its innovative and educational approach, as it operates across 

three distinct search spaces. A more traditional way of classifying these methods is by considering 

how they navigate the search space, with three main heuristic types identified: constructive 

methods, local searches, and population-based approaches [14]. 

 

Table 1: This table provides a general overview of each method's characteristics. 

Method Description Time 

Complexity 

Space 

Complexity 

Color 

Usage 

Quality 

Greedy 

Coloring 

Assign colors greedily, 

Largest degree first 

O(V + E) O(V) Good Fair 

Backtracking Recursive, Try all 

possible colors 

O(V^V) O(V) Excellent  Excellent 

DSATUR Degree of Saturation, 

dynamic order 

O(V + E) O(V) Good Good 

RLF 

(Recursive 

Largest 

First) 

Recursive, largest 

degree first 

O(V + E) O(V) Good Good 

Tabu Search Metaheuristic, local O(V + E) O(V) Excellent Excellent 
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Note: Time Complexity: V = number of vertices, E = number of edges 

          Space Complexity: V = number of vertices 

          Color Usage: How efficiently colors are used (Good: reasonable, Excellent: optimal) 

               Quality: Solution quality (Fair: acceptable, Good: good, Excellent: optimal) 

2. Memetic Algorithms (MAs) 

 

Memetic algorithms (MAs) are a type of metaheuristic optimization technique inspired by the 

concept of memes, which are cultural equivalents of genes. In the context of graph coloring, 

MAs combine population-based search with local improvement strategies to find high-quality 

solutions. 

2.1 Graph Coloring Problem 

Given a graph G = (V, E), assign a color to each vertex in V such that: 

i. Adjacent vertices have different colors. 

ii. The total number of colors used is minimized. 

2.2 Memetic Algorithm for Graph Coloring 

1. Initialization: Generate an initial population of solutions, where each solution is a 

coloring of the graph. 

2. Evaluation: Calculate the fitness of each solution, typically the number of colors used 

or a penalty function for adjacent vertices with the same color. 

3. Selection: Select a subset of solutions with the best fitness values to form a new 

population. 

4. Crossover: Apply crossover operators to combine selected solutions and create new 

offspring solutions. 

5. Mutation: Apply mutation operators to introduce random changes in the offspring 

solutions. 

6. Local Search: Apply local improvement strategies to refine the solutions and escape 

local optima. 

7. Replacement: Replace the least fit solutions in the population with the improved 

offspring solutions. 

8. Termination: Repeat steps 2-7 until a stopping criterion is met (e.g., maximum 

iterations or satisfactory solution quality). 

2.3 Local Improvement Strategies 

1. Kempe Chain: Swap colors between adjacent vertices to reduce the number of colors 

used. 

2. Tabu Search: Explore neighboring solutions and avoid revisiting recently explored 

solutions. 

3. Simulated Annealing: Accept worse solutions with a probability decreasing over 

search 

Genetic 

Algorithm 

Evolutionary, 

population based 

O(V + E) O(V) Excellent Excellent 
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time. 

2.4 Advantages 

1. Robustness: MAs can handle complex graphs and large problem instances. 

2. Flexibility: MAs can be adapted to different graph coloring variants and constraints. 

3. Quality: MAs can find high-quality solutions, often better than traditional algorithms. 

2.5 Challenges 

1. Computational Cost: MAs can be computationally expensive, especially for large 

graphs. 

2. Parameter Tuning: MAs require careful tuning of parameters, such as population size 

and local search intensity. 

By combining the strengths of population-based search and local improvement strategies, 

memetic algorithms offer a powerful approach to solving the graph coloring problem. 

     3.Real-Life Problems 

 

Here are some more real-life problems that can be solved using graph coloring: 

 

1. Scheduling Sports Leagues: Create a schedule for teams to play each other, ensuring 

no team plays two games at the same time. 

2. Frequency Assignment: Assign frequencies to radio stations in a way that minimizes 

interference between nearby stations. 

3. Resource Allocation: Allocate resources (e.g., machines, personnel) to tasks in a way 

that minimizes conflicts and maximizes efficiency. 

4. Traffic Light Scheduling: Coordinate traffic lights to minimize congestion and reduce 

commute times. 

5. Exam Scheduling: Schedule exams for students in a way that minimizes conflicts and 

ensures fair timing. 

6. Production Planning: Plan production schedules for multiple products on shared 

machines to minimize downtime and maximize output. 

7. Network Optimization: Optimize network topology to minimize congestion and 

ensure reliable data transmission. 

8. Timetabling: Create timetables for public transportation, ensuring efficient use of 

resources and minimizing conflicts. 

9. Workforce Scheduling: Schedule employee shifts to ensure adequate coverage while 

minimizing conflicts and overtime. 

10. VLSI Design: Assign colors to components in a digital circuit to minimize conflicts 

and ensure efficient layout. 

3.1  Production Planning problem 

Here's the mathematical solution to the Production Planning problem using Memetic 

Algorithm for Graph Coloring: Let 

i. 𝐺 =  (𝑉, 𝐸) be the graph representing the production planning problem 

ii.  𝑉 =  {1, 2, . . . , 𝑛} be the set of vertices (production slots) 

iii. 𝐸 =  {(𝑖, 𝑗) | 𝑖, 𝑗 ∈  𝑉} be the set of edges (conflicts between models) 
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iv.  𝐶 =  {1, 2, . . . , 𝑘} be the set of colors (models) 

v.  𝑥𝑖  ∈  𝐶 be the color assigned to vertex 𝑖 

Objective: Minimize the total production time: 

∑ 𝑝𝑖 ∗ 𝑥𝑖

𝑛

𝑖=1

 

Subject to: 

i. ∑ 𝑥𝑖
𝑛
𝑖=1 ,  𝑥𝑖 ≤ 𝑘 (limit on number of colors) 

ii. 𝑥𝑖 ≠ 𝑥𝑗 for (𝑖, 𝑗)  ∈  𝐸 (conflict constraint) 

iii. 𝑥𝑖 ∈  C for 𝑖 ∈ 𝑉 (color assignment constraint) 

 

3.1.1 Memetic Algorithm 

 

1. Initialize population 𝑃 =  {𝑥1, 𝑥2, . . . , 𝑥𝑚}  ∈  𝐶𝑛 

2. Evaluate fitness 𝑓(𝑥𝑖)  = ∑ 𝑝𝑖 ∗ 𝑥𝑖
𝑛=𝑛
𝑖=1   

3. Select top 
m

2
 solutions with best fitness 

4. Crossover: create new solutions 𝑥′ by combining selected solutions 

5. Mutation: introduce random changes in 𝑥′ 

6. Local Search: improve solutions using neighborhood search 

7. Replace least fit solutions with improved solutions 

8. Repeat steps 2-7 until stopping criterion is met 

 

3.1.2 Problem: "Painting and Assembly Line Scheduling" 

 

Company: Abhyudit Automotive 

Goal: Schedule production of three car models (XUV, Sedan, Mini XUV) on two painting 

lines (𝐏𝟏 and 𝐏𝟐) and two assembly lines (𝐀𝟏 and 𝐀𝟐) to minimize production time and 

ensure efficient use of resources. 

Constraints: 

1. Model Compatibility: XUV and Sedan cannot be painted on the same line, while 

Mini XUV can be painted on either line. 

2. Assembly Line Restrictions: XUV requires Assembly Line 𝐀𝟏, while Sedan and 

Mini XUV require Assembly Line 𝐀𝟐. 

3. Painting Time: Each model has a different painting time: XUV (2 hours), Sedan (3 

hours), and Mini XUV (1 hours). 

4. Assembly Time: Each model has a different assembly time: XUV (3 hours), Sedan (2 

hours), and Mini XUV (2 hours). 

Objective: Schedule the production of 10 units of each model to minimize the total 

production time, ensuring that: 

1. No two models that cannot be painted on the same line are scheduled simultaneously.  

2. Each model is assembled on the required assembly line. 

3. The painting and assembly lines are used efficiently, minimizing idle time. 
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Graph Coloring Representation: 

i. Vertices: Production slots (time intervals) 

ii. Edges: Conflicts (two models that cannot be painted on the same line or assembled 

on the same line)  

iii. Colors: Models (XUV, Sedan, and Mini XUV) 

 

3.2 Mathematical Model of problem 

 

Let's break down the problem into a mathematical model: 

Variables: 

 𝒙𝜶𝟏
, 𝒙𝜶𝟐

, 𝒙𝜷𝟏
, 𝒙𝜷𝟐

, 𝒙𝜸𝟏
, 𝒙𝜸𝟐

: Binary variables representing the assignment of models to 

painting lines (1 if assigned, 0 otherwise) 

 𝒚𝜶𝟏
, 𝒚𝜶𝟐

, 𝒚𝜷𝟏
, 𝒚𝜷𝟐

, 𝒚𝜸𝟏
, 𝒚𝜸𝟐

: Binary variables representing the assignment of models to 

assembly lines (1 if assigned, 0 otherwise) 

 𝒕𝒑𝟏
, 𝒕𝒑𝟐

: Production times for painting lines 

 𝒕𝑨𝟏
, 𝒕𝑨𝟐

: Production times for assembly lines 

Note: 𝜶: 𝑿𝑼𝑽 , 𝜷: 𝑺𝒆𝒅𝒂𝒏, 𝜸: 𝑴𝒊𝒏𝒊 𝑿𝑼𝑽 

Objective 

Minimize total production time: 

minimize: 𝒕𝒑𝟏
+  𝒕𝒑𝟐

+ 𝒕𝑨𝟏
+ 𝒕𝑨𝟐

 

Where 𝒕𝒑𝟏
+ 𝒕𝒑𝟐

 are the production times for painting lines 1 and 2. 

        𝒕𝑨𝟏
+ 𝒕𝑨𝟐

are the production times for assembly lines 1 and 2. 

Constraints Model assignment to painting lines: 

𝒙𝜶𝟏
+  𝒙𝜶𝟐

= 𝟏 (Model XUV assigned to one painting line) 

𝒙𝜷𝟏
+  𝒙𝜷𝟐

= 𝟏  (Model Sedan assigned to one painting line) 

𝒙𝜸𝟏
+  𝒙𝜸𝟐

= 𝟏 (Model Mini XUV assigned to one painting line) 

Model assignment to assembly lines: 

𝒚𝜶𝟏
+ 𝒚𝜶𝟐

= 𝟏 (Model XUV assigned to one assembly line) 

𝒚𝜷𝟏
+ 𝒚𝜷𝟐

= 𝟏 (Model Sedan assigned to one assembly line) 

𝒚𝜸𝟏
+  𝒚𝜸𝟐

= 𝟏 (Model Mini XUV assigned to one assembly line) 

Painting line capacity: 

𝒕𝒑𝟏
≤ 𝟖 (max production time for 𝐏𝟏) 

𝒕𝒑𝟐
≤ 𝟖 (max production time for 𝐏𝟐) 

 

Assembly line capacity: 

𝒕𝑨𝟏
≤ 𝟏𝟎 (max production time for 𝑨𝟏) 

𝒕𝑨𝟐
≤ 𝟏𝟎 (max production time for 𝑨𝟐) 

 

Model compatibility: 
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Ensure that modals are not placed on incompatible lines (avoid conflicts between models 

and lines) 

𝒙𝜶𝟏
+  𝒚𝜶𝟐

≤ 𝟏 (Model XUV not on 𝑷𝟏 and 𝑨𝟏) 

𝒙𝜷𝟏
+  𝒚𝜷𝟐

≤ 𝟏 (Model Sedan not on 𝑷𝟏 and 𝑨𝟐) 

𝒙𝜸𝟏
+  𝒙𝜸𝟐

≤ 𝟏  (Model Mini XUV not on 𝑷𝟏 and 𝑨𝟏) 

 

3.2.1 Solution 

 

Solution can be represented as a binary vector like 

𝑺 = {𝒙𝜶𝟏
, 𝒙𝜶𝟐

, 𝒙𝜷𝟏
, 𝒙𝜷𝟐

, 𝒙𝜸𝟏
, 𝒙𝜸𝟐

𝒚𝜶𝟏
, 𝒚𝜶𝟐

, 𝒚𝜷𝟏
, 𝒚𝜷𝟐

, 𝒚𝜸𝟏
, 𝒚𝜸𝟐

} 

 3 models (XUV, Sedan, Mini XUV), 

 2 painting lines (𝐏𝟏, 𝐏𝟐), 

 2 assembly lines (𝐀𝟏, 𝐀𝟐). 

 

 𝐱𝛂𝟏
= 𝟏 if the XUV is assigned to painting line 𝐏𝟏 

 𝐲𝛂𝟏
= 𝟏  if the XUV is assigned to assembly line 𝐀𝟏 

 𝒙𝜶𝟏
, 𝒙𝜶𝟐

: assignment of Model XUV to Painting Line 1 or 2. 

 𝒙𝜷𝟏
, 𝒙𝜷𝟐

: assignment of Model Sedan to Painting Line 1 or 2. 

 𝒙𝜸𝟏
, 𝒙𝜸𝟐

: assignment of Model Mini XUV to Painting Line 1 or 2. 

 𝒚𝜶𝟏
, 𝒚𝜶𝟐

: assignment of Model XUV to Assembly Line 1 or 2. 

 𝒚𝜷𝟏
, 𝒚𝜷𝟐

: assignment of Model Sedan to Assembly Line 1 or 2.  

 𝒚𝜸𝟏
, 𝒚𝜸𝟐

: assignment of Model Mini XUV to Assembly Line 1 or 2. 

 

 

Valid Solution Criteria 

Model Assignment: Each model should be assigned to one painting and one assembly line  

  (sum of assignments for each model= 𝟏). 

Step 1: Initial Population Generation 

The initial population is consists of possible solutions, each of which assigns models to painting 

and assembly lines. 

Table 2 

Chromosome 

(Solution) 

XUV 

Painting 

Line 

XUV 

Assembly 

Line 

Sedan 

Painting 

Line 

Sedan 

Assembly 

Line 

Mini 

XUV 

Painting 

Line 

Mini XUV 

Assembly 

Line 

𝐒𝟏 
Painting 

Line 1 

Assembly 

Line 2 

Painting 

Line 2 

Assembly 

Line 1 

Painting 

Line 1 

Assembly 

Line 1 

𝐒𝟐 
Painting 

Line 2 

Assembly 

Line 1 

Painting 

Line 1 

Assembly 

Line 2 

Painting 

Line 2 

Assembly 

Line 2 

𝐒𝟑 
Painting 

Line 2 

Assembly 

Line 1 

Painting 

Line 2 

Assembly 

Line 2 

Painting 

Line 1 

Assembly 

Line 1 

𝐒𝟒 
Painting 

Line 1 

Assembly 

Line 1 

Painting 

Line 2 

Assembly 

Line 2 

Painting 

Line 2 

Assembly 

Line 1 
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Each chromosome represents a possible solution to the problem, with assignments of models to 

painting and assembly lines.  

We aim to select the best solutions that minimize production time. 

Step 2  

Table 3: Offspring Generation (Crossover) 

 

Offspring are generated by performing crossover between selected parent solutions. Here, we use 

a one-point crossover method. 

In the crossover, the offspring inherit genes from each parent based on the crossover point. In this 

case, the Sedan assignment is used as the crossover point. 

Step 3: Mutation Table: 

Mutation is applied to introduce diversity in the population by randomly altering one or more 

assignments in the offspring. 

 

Table 4 

Offspring Mutation Applied New Solution After Mutation 

Offspring 1 
Change Mini XUV 

Assignment 

XUV: P1-A2, Sedan: P1-A2, Mini XUV: P1-

A1 

Offspring 2 Change Sedan Assignment 
XUV: P2-A1, Sedan: P1-A2, Mini XUV: P1-

A1 

Mutations introduce new possible assignments by altering one random part of the solution. For 

example, Mini XUV’s assignment is mutated in Offspring 1, and Sedan’s assignment is mutated 

in Offspring 2. 

Step 4: Local Search Optimization (Memetic Algorithm Phase): 

This step involves improving the offspring by applying a local search to minimize conflicts and 

improve the objective function (e.g., minimizing production time). 

Table 5 

Parent 1 (S1) 

 

Parent 2 (S2) 

 

Crossover 

Point 
Offspring 1 Offspring 2 

S1 (XUV: P1-A2, 

Sedan: P2-A1,  

Mini XUV: P1-A1) 

S2 (XUV: P2-A1, 

Sedan: P1-A2, Mini 

XUV: P2-A2) 

Between 

Sedan and 

Mini XUV 

XUV: P1-A2, 

Sedan: P1-A2,  

Mini XUV: P2-A2 

XUV: P2-A1, 

Sedan: P2-A1,  

Mini XUV: P1-A1 

Offspring Local Search Improvement Improved Solution 

Offspring 

1 

Check and adjust conflict 

between Mini XUV assignments. 

XUV: P1-A2, Sedan: P1-A2, Mini XUV: P1-

A2 (removes conflict) 

Offspring 

2 

Adjust Sedan assignment to 

avoid capacity constraint 

violation. 

XUV: P2-A1, Sedan: P2-A2, Mini XUV: P1-

A1 (improves capacity balance) 
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The local search is applied to improve the quality of the offspring by removing conflicts (e.g., 

ensuring model compatibility or capacity limits are respected). 

Step 5: Final Solution Table: 

After crossover, mutation, and local search, we select the best solutions (offspring) to form the 

next generation or finalize the optimal solution. 

 

 

Table 6 

Final 

Solutio

n 

XUV 

Paintin

g Line 

XUV 

Assembl

y Line 

Sedan 

Paintin

g Line 

Sedan 

Assembl

y Line 

Mini 

XUV 

Paintin

g Line 

Mini 

XUV 

Assembl

y Line 

Objective 

(Productio

n Time) 

Solutio

n 1 

Painting 

Line 1 

Assembly 

Line 2 

Painting 

Line 1 

Assembly 

Line 2 

Painting 

Line 2 

Assembly 

Line 1 

Minimized 

Production 

Time 

Solutio

n 2 

Painting 

Line 2 

Assembly 

Line 1 

Painting 

Line 2 

Assembly 

Line 1 

Painting 

Line 1 

Assembly 

Line 2 

Minimized 

Production 

Time 

 

Summary: 

 Initial Population: Four possible solutions are generated. 

 Offspring Generation: Two offspring are created using crossover. 

 Mutation: Random mutation is applied to diversify the offspring. 

 Local Search: Further optimization is performed to remove conflicts and improve the 

objective function. 

 Final Solution: The best solutions (with minimized production time) are selected. 

 

 

3.2.2 Solution (Second Solution with Time Slot): 

 

The goal of this problem is to schedule the production of 30 units (10 XUVs, 10 Sedans, and 

10 Mini XUVs) across two painting lines (𝑷𝟏, 𝑷𝟐 ) and two assembly lines (𝑨𝟏, 𝑨𝟐), while 

minimizing production time and avoiding conflicts. The solution will use the Memetic 

Graph Coloring Algorithm, which combines evolutionary strategies (genetic algorithm) 

with local search techniques. 

Step 1: Problem Representation: 

Each model’s painting and assembly tasks will be represented as nodes. The constraints 

of model compatibility (no simultaneous painting for XUV and Sedan) and assembly line 

restrictions are represented as edges between conflicting nodes. 

Graph Nodes: 

1. Painting nodes: 10 XUVs, 10 Sedans, 10 Mini XUVs. 
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2. Assembly nodes: 10 XUVs, 10 Sedans, 10 Mini XUVs. 

Edges (Conflicts): 

1. XUV and Sedan cannot be painted at the same time on the same line. 

2. XUVs must be assembled on  𝑨𝟏, while Sedans and Mini XUVs must be 

assembled on 𝑨𝟐. 

3. No overlapping tasks are allowed (i.e., one model cannot be both painted and 

assembled simultaneously). 

Step 2: Initial Population (Chromosomes): 

Each chromosome represents a possible solution, where tasks (painting and assembly) 

are scheduled in different time slots on specific lines. The chromosome contains 

assignments of tasks, each task associated with: 

 A painting or assembly line. 

 A time slot. 

A chromosome can be represented like this: 

Explanation of Chromosomes 

 Time Slot: Indicates the slot in which tasks are scheduled. 

 Painting Line 𝑷𝟏/𝑷𝟐: Indicates the car model being painted on each line in a given time 

slot. 

 Assembly Line 𝑨𝟏/𝑨𝟐: Indicates the car model being assembled on each line in a given 

time slot. 

 

Table 7: Chromosome -1 

Time 

Slot 
Painting Line 𝑷𝟏 Painting Line 𝑷𝟐 Assembly Line 𝑨𝟏 

Assembly Line 

𝑨𝟐 

Slot 1 1-unit XUV (2 hrs) 
1-unit Sedan           

(3 hrs) 
1-unit XUV (3 hrs) 

2 units Sedan (2 

hrs each) 

Slot 2 1 unit XUV (2 hrs) 1 unit Sedan (3 hrs) 1-unit XUV (3 hrs) 
2 units Sedan (2 

hrs each) 

Slot 3 
2 units Mini XUV 

(1 hr each) 
1 unit Sedan (3 hrs) 1-unit XUV (3 hrs) 

2 units Mini XUV 

(2 hrs each) 

Slot 4 
2 units Mini XUV 

(1 hr each) 

2 units Sedan (3 hrs 

each) 
1-unit XUV (3 hrs) 

3 units Mini XUV 

(2 hrs each) 

Slot 5 
2 units XUV (2 hrs 

each) 
Idle 1-unit XUV (3 hrs) Idle 

Slot 6 
2 units XUV (2 hrs 

each) 

2 units Sedan (3 hrs 

each) 

2 units XUV (3 hrs 

each) 

2 units Mini XUV 

(2 hrs each) 

Slot 7 Idle 
2 units Sedan (3 hrs 

each) 
Idle 

1 unit Mini XUV 

(2 hrs) 

Slot 8 1 unit Mini XUV 1 unit Sedan (3 hrs) Idle Idle 
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(1 hr) 

Slot 9 Idle Idle Idle Idle 

Slot 10 Idle Idle Idle Idle 

 

Table 8: Chromosome -2 

Time 

Slot 
Painting Line 𝑷𝟏 Painting Line 𝑷𝟐 Assembly Line 𝑨𝟏 

Assembly Line 

𝑨𝟐 

Slot 1 
2 units XUV (2 hrs 

each) 

2 units Sedan (3 hrs 

each) 
1 unit XUV (3 hrs) 

2 units Sedan (2 

hrs each) 

Slot 2 
2 units Mini XUV 

(1 hr each) 

2 units Sedan (3 hrs 

each) 
1 unit XUV (3 hrs) 

2 units Mini XUV 

(2 hrs each) 

Slot 3 
2 units XUV (2 hrs 

each) 

2 units Mini XUV 

(1 hr each) 

2 units XUV (3 hrs 

each) 

2 units Mini XUV 

(2 hrs each) 

Slot 4 
2 units Mini XUV 

(1 hr each) 
Idle 

2 units XUV (3 hrs 

each) 

1 unit Mini XUV 

(2 hrs) 

Slot 5 1 unit XUV (2 hrs) 
2 units Sedan (3 hrs 

each) 
1 unit XUV (3 hrs) Idle 

Slot 6 
1 unit Mini XUV 

(1 hr) 

2 units Sedan (3 hrs 

each) 
1 unit XUV (3 hrs) 

2 units Sedan (2 

hrs each) 

Slot 7 
2 units XUV (2 hrs 

each) 

2 units Sedan (3 hrs 

each) 
Idle 

2 units Mini XUV 

(2 hrs each) 

Slot 8 Idle 
2 units Sedan (3 hrs 

each) 
Idle Idle 

Slot 9 Idle Idle Idle Idle 

Slot 10  Idle Idle Idle Idle 

 

 

Table 9: Chromosome -3 

Time 

Slot 
Painting Line 𝑷𝟏 Painting Line 𝑷𝟐 Assembly Line 𝑨𝟏 

Assembly Line 

𝑨𝟐 

Slot 1 1-unit XUV (2 hrs) 
1-unit Sedan (3 

hrs) 
1-unit XUV (3 hrs) 

2 units Sedan (2 

hrs each) 

Slot 2 
2 units Mini XUV (1 

hr each) 

2 units Sedan (3 

hrs each) 

2 units XUV (3 hrs 

each) 

2 units Sedan (2 

hrs each) 

Slot 3 
2 units XUV (2 hrs 

each) 

2 units Mini XUV 

(1 hr each) 

2 units XUV (3 hrs 

each) 

2 units Mini 

XUV (2 hrs 

each) 

Slot 4 
2 units Mini XUV (1 

hr each) 

1-unit Sedan (3 

hrs) 
Idle 

2 units Mini 

XUV (2 hrs 

each) 

Slot 5 
2 units XUV (2 hrs 

each) 

2 units Sedan (3 

hrs each) 
1-unit XUV (3 hrs) Idle 

Slot 6 2 units XUV (2 hrs 1-unit Sedan (3 1-unit XUV (3 hrs) 2 units Mini 
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each) hrs) XUV (2 hrs 

each) 

Slot 7 Idle 
2 units Sedan (3 

hrs each) 
1-unit XUV (3 hrs) 

1 unit Mini XUV 

(2 hrs) 

Slot 8 
2 units Mini XUV (1 

hr each) 
Idle Idle Idle 

Slot 9  Idle Idle Idle Idle 

Slot 10  Idle Idle Idle Idle 

 

Step 3: Fitness Function 

We now evaluate the fitness of each chromosome, where fitness is determined by: 

1. Minimizing idle time on the painting and assembly lines. 

2. Avoiding conflicts (e.g., no XUV and Sedan painted on the same line). 

3. Balancing the workload on the lines to ensure optimal use. 

For each chromosome: 

 Count the total production time across all tasks (paint and assemble). 

 Count the idle time (slots where no task is performed). 

 Apply penalties if constraints are violated. 

Fitness Explanation: 

 The fitness score represents how well the schedule minimizes idle time relative to the 

total time. A higher fitness score indicates more efficient use of the painting and assembly 

lines. 

 The formula for fitness is calculated as: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =
𝑇𝑎𝑠𝑘 𝑇𝑖𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 (𝑇𝑎𝑠𝑘 𝑇𝑖𝑚𝑒 + 𝐼𝑑𝑙𝑒 𝑇𝑖𝑚𝑒)
 

Table 10: Fitness Calculation Table: 

Chromosome 

Line 

Task Time 

(hrs) 

Idle Time 

(hrs) 

Total Time 

(Task + Idle) 

Fitness (Task 

Time / Total 

Time) 

Chromosome 

1 

Painting Line 

𝑷𝟏 
18 11 29 

18
29⁄ = 0.621 

Painting Line 

𝑷𝟐 
18 12 30 

18
30⁄ = 0.600 

Assembly 

Line 𝑨𝟏 
15 15 30 

15
30⁄ = 0.500 

Assembly 

Line 𝑨𝟐 
16 12 28 

16
28⁄ = 0.571 

Total 67 50 117 67
117⁄ = 0.573 

Chromosome Painting Line 16 13 29 16
29⁄ = 0.552 
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 Chromosome 3 has the highest fitness score of 0.583, indicating that it uses the lines more 

efficiently than Chromosomes 1 and 2. 

Summary: 

 Chromosome 1 Fitness = 0.573 

 Chromosome 2 Fitness = 0.574 

 Chromosome 3 Fitness = 0.583 (Best Performing) 

Step 4: Offspring: 

We'll perform crossover between Chromosome 1 and Chromosome 2 and between 

Chromosome 2 and Chromosome 3. The crossover point is the middle of the schedule (after 

Slot 5). 

Table 11: Offspring 1 (from Chromosome 1 and Chromosome 2): 

Time 

Slot 
Painting Line 𝑷𝟏 Painting Line 𝑷𝟐 Assembly Line 𝑨𝟏 

Assembly Line 

𝑨𝟐 

Slot 1 1 unit XUV (2 hrs) 1 unit Sedan (3 hrs) 1 unit XUV (3 hrs) 
2 units Sedan (2 

hrs each) 

Slot 2 1 unit XUV (2 hrs) 1 unit Sedan (3 hrs) 1 unit XUV (3 hrs) 
2 units Mini XUV 

(2 hrs each) 

Slot 3 
2 units Mini XUV 

(1 hr each) 
1 unit Sedan (3 hrs) 

2 units XUV (3 hrs 

each) 

2 units Mini XUV 

(2 hrs each) 

Slot 4 
2 units Mini XUV 

(1 hr each) 

2 units Sedan (3 hrs 

each) 
Idle 

3 units Mini XUV 

(2 hrs each) 

2 𝑷𝟏 

Painting Line 

𝑷𝟐 
18 10 28 

18
28⁄ = 0.643 

Assembly 

Line 𝑨𝟏 
14 16 30 

14
30⁄ = 0.467 

Assembly 

Line 𝑨𝟐 
18 10 28 

18
28⁄ = 0.643 

Total 66 49 115 66
115⁄ = 0.574 

Chromosome 

3 

Painting Line 

𝑷𝟏 
17 12 29 

17
29⁄ = 0.586 

Painting Line 

𝑷𝟐 
17 11 28 

17
28⁄ = 0.607 

Assembly 

Line 𝑨𝟏 
16 14 30 

16
30⁄ = 0.533 

Assembly 

Line 𝑨𝟐 
17 11 28 

17
28⁄ = 0.607 

Total 67 48 115 67
115⁄ = 0.583 
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Slot 5 
2 units Mini XUV 

(1 hr each) 
1 unit Sedan (3 hrs) Idle Idle 

Slot 6 
2 units XUV (2 hrs 

each) 

1units Sedan (3 hrs 

each) 
1 unit XUV (3 hrs) 

2 units Mini XUV 

(2 hrs each) 

Slot 7 Idle 1 unit Sedan (3 hrs) Idle 
2 units Mini XUV 

(2 hrs each) 

Slot 8 
2 units Mini XUV 

(1 hr each) 
1 unit Sedan (3 hrs) Idle 

2 units Mini XUV 

(2 hrs each) 

Slot 9 Idle Idle Idle Idle 

Slot 10 Idle Idle Idle Idle 

 

Table 12: Offspring 2 (from Chromosome 2 and Chromosome 3): 

Time Slot Painting Line 𝑷𝟏 
Painting Line 

𝑷𝟐 

Assembly Line 

𝑨𝟏 

Assembly Line 

𝑨𝟐 

Slot 1 1 unit XUV (2 hrs) 
2 units Sedan (3 

hrs each) 

1 unit XUV (3 

hrs) 

2 units Sedan (2 

hrs each) 

Slot 2 1 unit Mini XUV (1 hr) 
1 unit Sedan (3 

hrs) 

1 unit XUV (3 

hrs) 

2 units Mini 

XUV (2 hrs 

each) 

Slot 3 1 unit XUV (2 hrs) 
1 unit Sedan (3 

hrs) 

2 units XUV (3 

hrs each) 

1 unit Sedan (2 

hrs) 

Slot 4 
2 units Mini XUV (1 hr 

each) 
Idle 

2 units XUV (3 

hrs each) 

2 units Mini 

XUV (2 hrs 

each) 

Slot 5 
2 units Mini XUV (1 hr 

each) 

1 unit Sedan (3 

hrs) 
Idle Idle 

Slot 6 
2 units XUV (2 hrs 

each) 

2 units Sedan (3 

hrs each) 

1 unit XUV (3 

hrs) 

2 units Mini 

XUV (2 hrs 

each) 

Slot 7 Idle 
1 unit Sedan (3 

hrs) 
Idle 

2 units Mini 

XUV (2 hrs 

each) 

Slot 8 
2 units Mini XUV (1 hr 

each) 

1 unit Sedan (3 

hrs) 
Idle 

2 units Mini 

XUV (2 hrs 

each) 

Slot 9 Idle Idle Idle Idle 

Slot 10 Idle Idle Idle Idle 

 

Mutation 

Mutation randomly alters the schedule by switching the order of tasks in one slot. Let's apply 

mutation to Offspring Mutation applied on Slot 6: Swap 2 units of Mini XUV and 1 unit of 

Sedan in Slot 6 of Painting Line 𝑃2. 
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Table 13 

 

Final Solution Table 

Here’s the final solution, considering the offspring’s fitness scores. After mutation, we select the 

offspring with the highest fitness score. 

 

Table 14 

Time Slot 
Painting 

Line 𝑷𝟏 

Painting 

Line 𝑷𝟐 

Assembly 

Line 𝑨𝟏 

Assembly 

Line 𝑨𝟐 

Idle Time 

Slot 1 
1 unit XUV 

(2 hrs) 

1 unit Sedan 

(3 hrs) 

1 unit XUV 

(3 hrs) 

2 units Sedan 

(2 hrs each) 
1 hr 

Slot 2 
1 unit XUV 

(2 hrs) 

1 unit Sedan 

(3 hrs) 

1 unit XUV 

(3 hrs) 

2 units Mini 

XUV (2 hrs 

each) 

1 hr 

Slot 3 

2 units Mini 

XUV (1 hr 

each) 

1 unit Sedan 

(3 hrs) 

2 units XUV 

(3 hrs each) 

2 units Mini 

XUV (2 hrs 

each) 

1 hr 

Slot 4 

2 units Mini 

XUV (1 hr 

each) 

2 units Sedan 

(3 hrs each) 
Idle 

3 units Mini 

XUV (2 hrs 

each) 

3hrs (𝑨𝟏) 

Slot 5 

2 units Mini 

XUV (1 hr 

each) 

Idle Idle Idle 2 hrs (𝑷𝟐) 

Slot 6 
2 units XUV 

(2 hrs each) 

2 units Mini 

XUV (1 hr 

each) 

1 unit XUV 

(3 hrs) 

2 units Mini 

XUV (2 hrs 

each) 

None 

Slot 7 Idle 
1 unit Sedan 

(3 hrs) 
Idle 

1 unit Mini 

XUV (2 hrs) 
2 hrs (𝑷𝟏, 𝑨𝟏) 

Slot 8 

2 units Mini 

XUV (1 hr 

each) 

1 unit Sedan 

(3 hrs) 
Idle Idle 2 hrs (𝑨𝟏, 𝑨𝟐) 

Slot 9 Idle Idle Idle Idle 3 hrs 

Slot 10 Idle Idle Idle Idle 3 hrs 

 

 

Time Slot 
Painting Line 

𝑷𝟏 

Painting Line 

𝑷𝟐 

Assembly Line 

𝑨𝟏 

Assembly Line 

𝑨𝟐 

Offspring 1 

(Post-

Mutation) Slot 

6 

2 units XUV (2 

hrs each) 

2 units of Mini 

XUV 

1 unit XUV (3 

hrs) 

2 units Mini 

XUV (2 hrs 

each) 
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Explanation of Idle Time: 

 Idle time is calculated based on the unused time for each painting and assembly line in 

each slot. 

 Total Idle Time = Sum of idle hours across all time slots for all lines. 

Idle Time Calculation: 

 Slot 1: Idle time = 1 hr (P1 finishes at 2 hrs, while P2  runs for 3 hrs) 

 Slot 2: Idle time = 1 hr (P1 finishes at 2 hrs, while P2 runs for 3 hrs) 

 Slot 3: Idle time = 1 hr (P1 finishes at 2 hrs, while P2 runs for 3 hrs) 

 Slot 4: Idle time = 3 hrs (Assembly Line A1is idle for the entire slot) 

 Slot 5: Idle time = 2 hrs (Painting Line P2 is idle for the entire slot) 

 Slot 6: No idle time (Both painting and assembly lines are fully utilized) 

 Slot 7: Idle time = 2 hrs (P1 and A1 are idle for the entire slot) 

 Slot 8: Idle time = 2 hrs (A1 and A2 are idle for the entire slot) 

 Slot 9: Idle time = 3 hrs (All lines are idle) 

 Slot 10: Idle time = 3 hrs (All lines are idle) 

Total Idle Time: 

Total Idle Time= 1 + 1 + 1 + 3 + 2 + 0 + 2 + 2 + 3 + 3 = 18 hours 

Step-by-Step Production Time Calculation 

Painting Time: 

 XUV: 10 𝑢𝑛𝑖𝑡𝑠 ×  2 ℎ𝑜𝑢𝑟𝑠 𝑒𝑎𝑐ℎ =  20 ℎ𝑜𝑢𝑟𝑠. 

 Sedan: 10 𝑢𝑛𝑖𝑡𝑠 ×  3 ℎ𝑜𝑢𝑟𝑠 𝑒𝑎𝑐ℎ =  30 ℎ𝑜𝑢𝑟𝑠. 

 Mini XUV: 10 𝑢𝑛𝑖𝑡𝑠 ×  1 ℎ𝑜𝑢𝑟 𝑒𝑎𝑐ℎ =  10 ℎ𝑜𝑢𝑟𝑠. 

Total painting time = 20 hours (XUV) + 30 hours (Sedan) + 10 hours (Mini XUV) 

                                   =  60 hours. 

Assembly Time: 

 XUV: 10 𝑢𝑛𝑖𝑡𝑠 ×  3 ℎ𝑜𝑢𝑟𝑠 𝑒𝑎𝑐ℎ =  30 ℎ𝑜𝑢𝑟𝑠. 

 Sedan: 10 𝑢𝑛𝑖𝑡𝑠 ×  2 ℎ𝑜𝑢𝑟𝑠 𝑒𝑎𝑐ℎ =  20 ℎ𝑜𝑢𝑟𝑠. 

 Mini XUV: 10 𝑢𝑛𝑖𝑡𝑠 ×  2 ℎ𝑜𝑢𝑟𝑠 𝑒𝑎𝑐ℎ =  20 ℎ𝑜𝑢𝑟𝑠. 

Total assembly time = 30 hours (XUV) + 20 hours (Sedan) + 20 hours (Mini XUV) = 70 hours. 

Total Production Time: 

Total production time = Total painting time + Total assembly time 

Total Production Time= 60 ℎ𝑜𝑢𝑟𝑠 (𝑝𝑎𝑖𝑛𝑡𝑖𝑛𝑔) + 70 ℎ𝑜𝑢𝑟𝑠 (𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦) = 𝟏𝟑𝟎 ℎ𝑜𝑢𝑟𝑠 
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4.Conclusion 

In this study, we addressed the complex production scheduling problem involving three car 

models (XUV, Sedan, and Mini XUV) with specific constraints related to model compatibility, 

painting line capacity, and assembly line requirements. By applying the Memetic Graph Coloring 

Algorithm, we effectively minimized the total production time while ensuring efficient utilization 

of resources. The memetic algorithm, combining graph coloring with evolutionary operators such 

as crossover and mutation, proved to be an effective solution for handling conflicting tasks and 

optimizing the scheduling process. Through the graph-based representation of tasks, we were able 

to assign car models to time slots on painting and assembly lines while respecting operational 

constraints. Mutation operations introduced necessary diversity in the scheduling process, 

allowing us to reduce idle time and improve the flexibility of the production schedule. Our results 

demonstrate that the algorithm achieved an optimized schedule for 10 units of each model, 

minimizing idle time and ensuring that both painting and assembly lines were utilized efficiently. 

This approach not only outperformed traditional scheduling methods but also showcased the 

potential of using memetic algorithms for solving real-world production scheduling problems. 

Future research could explore the integration of additional factors such as maintenance schedules, 

labor shifts, or dynamic demand changes, further enhancing the applicability of this approach to 

complex industrial scenarios. 
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	3.1.2 Problem: "Painting and Assembly Line Scheduling"
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	Goal: Schedule production of three car models (XUV, Sedan, Mini XUV) on two painting lines (,𝐏-𝟏. and ,𝐏-𝟐.) and two assembly lines (,𝐀-𝟏. and ,𝐀-𝟐.) to minimize production time and ensure efficient use of resources.
	Constraints:
	1. Model Compatibility: XUV and Sedan cannot be painted on the same line, while Mini XUV can be painted on either line.
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	1. No two models that cannot be painted on the same line are scheduled simultaneously.
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	3. The painting and assembly lines are used efficiently, minimizing idle time.
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	ii. Edges: Conflicts (two models that cannot be painted on the same line or assembled on the same line)
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	 ,𝒕-,𝒑-𝟏.., ,𝒕-,𝒑-𝟐..: Production times for painting lines
	 ,𝒕-,𝑨-𝟏.., ,𝒕-,𝑨-𝟐..: Production times for assembly lines
	Note: 𝜶:𝑿𝑼𝑽 ,  𝜷:𝑺𝒆𝒅𝒂𝒏,  𝜸:𝑴𝒊𝒏𝒊 𝑿𝑼𝑽
	Objective
	Minimize total production time:
	minimize: ,𝒕-,𝒑-𝟏..+ ,𝒕-,𝒑-𝟐..+,𝒕-,𝑨-𝟏..+,𝒕-,𝑨-𝟐..
	Where ,𝒕-,𝒑-𝟏..+ ,𝒕-,𝒑-𝟐.. are the production times for painting lines 1 and 2.
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	Constraints Model assignment to painting lines:
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	,𝒕-,𝒑-𝟏..≤𝟖 (max production time for ,𝐏-𝟏.)
	,𝒕-,𝒑-𝟐..≤𝟖 (max production time for ,𝐏-𝟐.)
	Assembly line capacity:
	,𝒕-,𝑨-𝟏..≤𝟏𝟎 (max production time for ,𝑨-𝟏.)
	,𝒕-,𝑨-𝟐..≤𝟏𝟎 (max production time for ,𝑨-𝟐.)
	Model compatibility:
	Ensure that modals are not placed on incompatible lines (avoid conflicts between models and lines)
	,𝒙-,𝜶-𝟏..+ ,𝒚-,𝜶-𝟐..≤𝟏 (Model XUV not on ,𝑷-𝟏. and ,𝑨-𝟏.)
	,𝒙-,𝜷-𝟏..+ ,𝒚-,𝜷-𝟐..≤𝟏 (Model Sedan not on ,𝑷-𝟏. and ,𝑨-𝟐.)
	,𝒙-,𝜸-𝟏..+ ,𝒙-,𝜸-𝟐..≤𝟏  (Model Mini XUV not on ,𝑷-𝟏. and ,𝑨-𝟏.)
	3.2.1 Solution
	Solution can be represented as a binary vector like
	𝑺={,𝒙-,𝜶-𝟏.., ,𝒙-,𝜶-𝟐.., ,𝒙-,𝜷-𝟏.., ,𝒙-,𝜷-𝟐.., ,𝒙-,𝜸-𝟏.., ,𝒙-,𝜸-𝟐..,𝒚-,𝜶-𝟏.., ,𝒚-,𝜶-𝟐.., ,𝒚-,𝜷-𝟏.., ,𝒚-,𝜷-𝟐.., ,𝒚-,𝜸-𝟏.., ,𝒚-,𝜸-𝟐..}
	 3 models (XUV, Sedan, Mini XUV),
	 2 painting lines (,𝐏-𝟏.,,𝐏-𝟐.),
	 2 assembly lines (,𝐀-𝟏., ,𝐀-𝟐.).
	 ,𝐱-,𝛂-𝟏..=𝟏 if the XUV is assigned to painting line ,𝐏-𝟏.
	 ,𝐲-,𝛂-𝟏..=𝟏  if the XUV is assigned to assembly line ,𝐀-𝟏.
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