

Mangalayatan Journal of Man. J. Sci. Ind. Res.

Scientific and Industrial Research Volume 2 (1) (2025), 25202

 ISSN: 3049-2815

 Article

Received: 3 Feb 2025; Accepted: 15 May. 2025

Adaptive Memetic Algorithm for Solving Complex Graph Coloring Problem

Anjali Gangrade1, Bhawna Agrawal2 and Sanjit Kumar3
1,2 Department of Mathematics, Rabindranath Tagore University, Bhopal (M.P), India,

 3Department of Mathematics Lakshmi Narain College of Technology & Science, Bhopal (M.P), India,
1anjali.gangrade@gmail.com 2bhawnakhushiagrawal@gmail.com

3sanjeetkumarmath@gmail.com

Abstract

 Graph vertex coloring with a fixed number of colors is a well-known, extensively studied NP-

complete problem. The most effective approaches to solving this challenge have been hybrid

algorithms, such as memetic algorithms or quantum annealing, which combine the strengths of

local search within population-based frameworks. In this paper, we address a production

scheduling problem involving three distinct car models-XUV, Sedan, and Mini XUV requiring

assignment to two painting lines and two assembly lines. The objective is to minimize total

production time while adhering to various operational constraints such as model compatibility

for painting lines, specific assembly line restrictions, and differing painting and assembly times

for each model. To solve this problem efficiently, we propose a solution based on the Memetic

Graph Coloring Algorithm. Our approach incorporates a graph-based representation of the

problem, where nodes represent tasks (painting and assembly of individual car units) and edges

represent incompatibilities or resource conflicts. The Memetic Algorithm optimizes the

assignment of tasks to time slots, leveraging both crossover and mutation operations to explore

feasible solutions. Specifically, mutation is employed to randomly alter schedules by swapping

tasks within slots, which introduces diversity and enhances the search process.

Keywords: Production Scheduling, Memetic Algorithm, Graph Coloring, Car Manufacturing,

Optimization, Idle Time, Scheduling Constraints.

1. Introduction

Efficient production scheduling is a critical factor in optimizing the manufacturing process,

particularly in industries with complex product lines, such as the automotive industry. In multi-

model production systems, assigning tasks such as painting and assembly to limited resources

(e.g., painting lines, assembly lines) requires careful consideration of model compatibility,

operational constraints, and production times. Failure to address these constraints leads to

inefficient use of resources, increased idle time, and extended production durations. Traditional

scheduling methods often struggle to achieve optimal solutions under such complex conditions.

In response, metaheuristic approaches, particularly evolutionary algorithms, have gained

significant attention for their ability to solve complex scheduling problems. One such approach

is the Memetic Algorithm (MA), which combines the global search capability of genetic

algorithms with local optimization strategies, offering a powerful tool for solving combinatorial

optimization problems. Memetic algorithms have been successfully applied to various scheduling

mailto:anjali.gangrade@gmail.com
mailto:bhawnakhushiagrawal@gmail.com
mailto:sanjeetkumarmath@gmail.com

11

A Gangrade,, B Agrawal and S Kumar

problems, including job-shop scheduling, flow-shop scheduling, and timetabling. These works

highlight the ability of memetic algorithms to balance exploration and exploitation in the solution

space, enabling the discovery of near-optimal solutions efficiently.

In the context of graph coloring, where nodes represent tasks and edges represent conflicts or

resource constraints, several studies have demonstrated the effectiveness of this model in

scheduling problems. Morgenstern and Shapiro showed how graph coloring could be applied to

exam scheduling [1].

Despite these advances, few studies have addressed the specific challenges encountered in

automotive production scheduling, where tasks are constrained by model-specific requirements

and resource limitations. Models like the XUV, Sedan, and Mini XUV have varying painting and

assembly times, and there are strict restrictions on which lines can handle which models. For

example, XUV and Sedan cannot be painted on the same line, and each model has different

assembly line requirements. Existing solutions often fail to efficiently minimize total production

time while managing these constraints.

The graph vertex coloring problem (GVCP) consists in finding the minimum number of colors,

called chromatic number χ(G), required to color the graph G while respecting these binary

constraints GVCP is a well-documented and much-studied problem because this simple

formalization can be applied to various issues such as frequency assignment problems (Aardal et

al. , Dib et al Comprehensive surveys on the Generalized Vertex Coloring Problem (GVCP) can

be found in the works [2,3]. Galinier and Hertz, Galinier et al. and Malaguti and Toth first two

studies categorize heuristics based on the selected search space [4,7,16]. Hertz et al variable Space

Search is particularly notable for its innovative and educational approach, as it operates across

three distinct search spaces. A more traditional way of classifying these methods is by considering

how they navigate the search space, with three main heuristic types identified: constructive

methods, local searches, and population-based approaches [14].

Table 1: This table provides a general overview of each method's characteristics.

Method Description Time

Complexity

Space

Complexity

Color

Usage

Quality

Greedy

Coloring

Assign colors greedily,

Largest degree first

O(V + E) O(V) Good Fair

Backtracking Recursive, Try all

possible colors

O(V^V) O(V) Excellent Excellent

DSATUR Degree of Saturation,

dynamic order

O(V + E) O(V) Good Good

RLF

(Recursive

Largest

First)

Recursive, largest

degree first

O(V + E) O(V) Good Good

Tabu Search Metaheuristic, local O(V + E) O(V) Excellent Excellent

12

Adaptive Memetic Algorithm for Solving Complex Graph Coloring Problem

Note: Time Complexity: V = number of vertices, E = number of edges

 Space Complexity: V = number of vertices

 Color Usage: How efficiently colors are used (Good: reasonable, Excellent: optimal)

 Quality: Solution quality (Fair: acceptable, Good: good, Excellent: optimal)

2. Memetic Algorithms (MAs)

Memetic algorithms (MAs) are a type of metaheuristic optimization technique inspired by the

concept of memes, which are cultural equivalents of genes. In the context of graph coloring,

MAs combine population-based search with local improvement strategies to find high-quality

solutions.

2.1 Graph Coloring Problem

Given a graph G = (V, E), assign a color to each vertex in V such that:

i. Adjacent vertices have different colors.

ii. The total number of colors used is minimized.

2.2 Memetic Algorithm for Graph Coloring

1. Initialization: Generate an initial population of solutions, where each solution is a

coloring of the graph.

2. Evaluation: Calculate the fitness of each solution, typically the number of colors used

or a penalty function for adjacent vertices with the same color.

3. Selection: Select a subset of solutions with the best fitness values to form a new

population.

4. Crossover: Apply crossover operators to combine selected solutions and create new

offspring solutions.

5. Mutation: Apply mutation operators to introduce random changes in the offspring

solutions.

6. Local Search: Apply local improvement strategies to refine the solutions and escape

local optima.

7. Replacement: Replace the least fit solutions in the population with the improved

offspring solutions.

8. Termination: Repeat steps 2-7 until a stopping criterion is met (e.g., maximum

iterations or satisfactory solution quality).

2.3 Local Improvement Strategies

1. Kempe Chain: Swap colors between adjacent vertices to reduce the number of colors

used.

2. Tabu Search: Explore neighboring solutions and avoid revisiting recently explored

solutions.

3. Simulated Annealing: Accept worse solutions with a probability decreasing over

search

Genetic

Algorithm

Evolutionary,

population based

O(V + E) O(V) Excellent Excellent

13

A Gangrade,, B Agrawal and S Kumar

time.

2.4 Advantages

1. Robustness: MAs can handle complex graphs and large problem instances.

2. Flexibility: MAs can be adapted to different graph coloring variants and constraints.

3. Quality: MAs can find high-quality solutions, often better than traditional algorithms.

2.5 Challenges

1. Computational Cost: MAs can be computationally expensive, especially for large

graphs.

2. Parameter Tuning: MAs require careful tuning of parameters, such as population size

and local search intensity.

By combining the strengths of population-based search and local improvement strategies,

memetic algorithms offer a powerful approach to solving the graph coloring problem.

 3.Real-Life Problems

Here are some more real-life problems that can be solved using graph coloring:

1. Scheduling Sports Leagues: Create a schedule for teams to play each other, ensuring

no team plays two games at the same time.

2. Frequency Assignment: Assign frequencies to radio stations in a way that minimizes

interference between nearby stations.

3. Resource Allocation: Allocate resources (e.g., machines, personnel) to tasks in a way

that minimizes conflicts and maximizes efficiency.

4. Traffic Light Scheduling: Coordinate traffic lights to minimize congestion and reduce

commute times.

5. Exam Scheduling: Schedule exams for students in a way that minimizes conflicts and

ensures fair timing.

6. Production Planning: Plan production schedules for multiple products on shared

machines to minimize downtime and maximize output.

7. Network Optimization: Optimize network topology to minimize congestion and

ensure reliable data transmission.

8. Timetabling: Create timetables for public transportation, ensuring efficient use of

resources and minimizing conflicts.

9. Workforce Scheduling: Schedule employee shifts to ensure adequate coverage while

minimizing conflicts and overtime.

10. VLSI Design: Assign colors to components in a digital circuit to minimize conflicts

and ensure efficient layout.

3.1 Production Planning problem

Here's the mathematical solution to the Production Planning problem using Memetic

Algorithm for Graph Coloring: Let

i. 𝐺 = (𝑉, 𝐸) be the graph representing the production planning problem

ii. 𝑉 = {1, 2, . . . , 𝑛} be the set of vertices (production slots)

iii. 𝐸 = {(𝑖, 𝑗) | 𝑖, 𝑗 ∈ 𝑉} be the set of edges (conflicts between models)

14

Adaptive Memetic Algorithm for Solving Complex Graph Coloring Problem

iv. 𝐶 = {1, 2, . . . , 𝑘} be the set of colors (models)

v. 𝑥𝑖 ∈ 𝐶 be the color assigned to vertex 𝑖

Objective: Minimize the total production time:

∑ 𝑝𝑖 ∗ 𝑥𝑖

𝑛

𝑖=1

Subject to:

i. ∑ 𝑥𝑖
𝑛
𝑖=1 , 𝑥𝑖 ≤ 𝑘 (limit on number of colors)

ii. 𝑥𝑖 ≠ 𝑥𝑗 for (𝑖, 𝑗) ∈ 𝐸 (conflict constraint)

iii. 𝑥𝑖 ∈ C for 𝑖 ∈ 𝑉 (color assignment constraint)

3.1.1 Memetic Algorithm

1. Initialize population 𝑃 = {𝑥1, 𝑥2, . . . , 𝑥𝑚} ∈ 𝐶𝑛

2. Evaluate fitness 𝑓(𝑥𝑖) = ∑ 𝑝𝑖 ∗ 𝑥𝑖
𝑛=𝑛
𝑖=1

3. Select top
m

2
 solutions with best fitness

4. Crossover: create new solutions 𝑥′ by combining selected solutions

5. Mutation: introduce random changes in 𝑥′

6. Local Search: improve solutions using neighborhood search

7. Replace least fit solutions with improved solutions

8. Repeat steps 2-7 until stopping criterion is met

3.1.2 Problem: "Painting and Assembly Line Scheduling"

Company: Abhyudit Automotive

Goal: Schedule production of three car models (XUV, Sedan, Mini XUV) on two painting

lines (𝐏𝟏 and 𝐏𝟐) and two assembly lines (𝐀𝟏 and 𝐀𝟐) to minimize production time and

ensure efficient use of resources.

Constraints:

1. Model Compatibility: XUV and Sedan cannot be painted on the same line, while

Mini XUV can be painted on either line.

2. Assembly Line Restrictions: XUV requires Assembly Line 𝐀𝟏, while Sedan and

Mini XUV require Assembly Line 𝐀𝟐.

3. Painting Time: Each model has a different painting time: XUV (2 hours), Sedan (3

hours), and Mini XUV (1 hours).

4. Assembly Time: Each model has a different assembly time: XUV (3 hours), Sedan (2

hours), and Mini XUV (2 hours).

Objective: Schedule the production of 10 units of each model to minimize the total

production time, ensuring that:

1. No two models that cannot be painted on the same line are scheduled simultaneously.

2. Each model is assembled on the required assembly line.

3. The painting and assembly lines are used efficiently, minimizing idle time.

15

A Gangrade,, B Agrawal and S Kumar

Graph Coloring Representation:

i. Vertices: Production slots (time intervals)

ii. Edges: Conflicts (two models that cannot be painted on the same line or assembled

on the same line)

iii. Colors: Models (XUV, Sedan, and Mini XUV)

3.2 Mathematical Model of problem

Let's break down the problem into a mathematical model:

Variables:

 𝒙𝜶𝟏
, 𝒙𝜶𝟐

, 𝒙𝜷𝟏
, 𝒙𝜷𝟐

, 𝒙𝜸𝟏
, 𝒙𝜸𝟐

: Binary variables representing the assignment of models to

painting lines (1 if assigned, 0 otherwise)

 𝒚𝜶𝟏
, 𝒚𝜶𝟐

, 𝒚𝜷𝟏
, 𝒚𝜷𝟐

, 𝒚𝜸𝟏
, 𝒚𝜸𝟐

: Binary variables representing the assignment of models to

assembly lines (1 if assigned, 0 otherwise)

 𝒕𝒑𝟏
, 𝒕𝒑𝟐

: Production times for painting lines

 𝒕𝑨𝟏
, 𝒕𝑨𝟐

: Production times for assembly lines

Note: 𝜶: 𝑿𝑼𝑽 , 𝜷: 𝑺𝒆𝒅𝒂𝒏, 𝜸: 𝑴𝒊𝒏𝒊 𝑿𝑼𝑽

Objective

Minimize total production time:

minimize: 𝒕𝒑𝟏
+ 𝒕𝒑𝟐

+ 𝒕𝑨𝟏
+ 𝒕𝑨𝟐

Where 𝒕𝒑𝟏
+ 𝒕𝒑𝟐

 are the production times for painting lines 1 and 2.

 𝒕𝑨𝟏
+ 𝒕𝑨𝟐

are the production times for assembly lines 1 and 2.

Constraints Model assignment to painting lines:

𝒙𝜶𝟏
+ 𝒙𝜶𝟐

= 𝟏 (Model XUV assigned to one painting line)

𝒙𝜷𝟏
+ 𝒙𝜷𝟐

= 𝟏 (Model Sedan assigned to one painting line)

𝒙𝜸𝟏
+ 𝒙𝜸𝟐

= 𝟏 (Model Mini XUV assigned to one painting line)

Model assignment to assembly lines:

𝒚𝜶𝟏
+ 𝒚𝜶𝟐

= 𝟏 (Model XUV assigned to one assembly line)

𝒚𝜷𝟏
+ 𝒚𝜷𝟐

= 𝟏 (Model Sedan assigned to one assembly line)

𝒚𝜸𝟏
+ 𝒚𝜸𝟐

= 𝟏 (Model Mini XUV assigned to one assembly line)

Painting line capacity:

𝒕𝒑𝟏
≤ 𝟖 (max production time for 𝐏𝟏)

𝒕𝒑𝟐
≤ 𝟖 (max production time for 𝐏𝟐)

Assembly line capacity:

𝒕𝑨𝟏
≤ 𝟏𝟎 (max production time for 𝑨𝟏)

𝒕𝑨𝟐
≤ 𝟏𝟎 (max production time for 𝑨𝟐)

Model compatibility:

16

Adaptive Memetic Algorithm for Solving Complex Graph Coloring Problem

Ensure that modals are not placed on incompatible lines (avoid conflicts between models

and lines)

𝒙𝜶𝟏
+ 𝒚𝜶𝟐

≤ 𝟏 (Model XUV not on 𝑷𝟏 and 𝑨𝟏)

𝒙𝜷𝟏
+ 𝒚𝜷𝟐

≤ 𝟏 (Model Sedan not on 𝑷𝟏 and 𝑨𝟐)

𝒙𝜸𝟏
+ 𝒙𝜸𝟐

≤ 𝟏 (Model Mini XUV not on 𝑷𝟏 and 𝑨𝟏)

3.2.1 Solution

Solution can be represented as a binary vector like

𝑺 = {𝒙𝜶𝟏
, 𝒙𝜶𝟐

, 𝒙𝜷𝟏
, 𝒙𝜷𝟐

, 𝒙𝜸𝟏
, 𝒙𝜸𝟐

𝒚𝜶𝟏
, 𝒚𝜶𝟐

, 𝒚𝜷𝟏
, 𝒚𝜷𝟐

, 𝒚𝜸𝟏
, 𝒚𝜸𝟐

}

 3 models (XUV, Sedan, Mini XUV),

 2 painting lines (𝐏𝟏, 𝐏𝟐),

 2 assembly lines (𝐀𝟏, 𝐀𝟐).

 𝐱𝛂𝟏
= 𝟏 if the XUV is assigned to painting line 𝐏𝟏

 𝐲𝛂𝟏
= 𝟏 if the XUV is assigned to assembly line 𝐀𝟏

 𝒙𝜶𝟏
, 𝒙𝜶𝟐

: assignment of Model XUV to Painting Line 1 or 2.

 𝒙𝜷𝟏
, 𝒙𝜷𝟐

: assignment of Model Sedan to Painting Line 1 or 2.

 𝒙𝜸𝟏
, 𝒙𝜸𝟐

: assignment of Model Mini XUV to Painting Line 1 or 2.

 𝒚𝜶𝟏
, 𝒚𝜶𝟐

: assignment of Model XUV to Assembly Line 1 or 2.

 𝒚𝜷𝟏
, 𝒚𝜷𝟐

: assignment of Model Sedan to Assembly Line 1 or 2.

 𝒚𝜸𝟏
, 𝒚𝜸𝟐

: assignment of Model Mini XUV to Assembly Line 1 or 2.

Valid Solution Criteria

Model Assignment: Each model should be assigned to one painting and one assembly line

 (sum of assignments for each model= 𝟏).

Step 1: Initial Population Generation

The initial population is consists of possible solutions, each of which assigns models to painting

and assembly lines.

Table 2

Chromosome

(Solution)

XUV

Painting

Line

XUV

Assembly

Line

Sedan

Painting

Line

Sedan

Assembly

Line

Mini

XUV

Painting

Line

Mini XUV

Assembly

Line

𝐒𝟏
Painting

Line 1

Assembly

Line 2

Painting

Line 2

Assembly

Line 1

Painting

Line 1

Assembly

Line 1

𝐒𝟐
Painting

Line 2

Assembly

Line 1

Painting

Line 1

Assembly

Line 2

Painting

Line 2

Assembly

Line 2

𝐒𝟑
Painting

Line 2

Assembly

Line 1

Painting

Line 2

Assembly

Line 2

Painting

Line 1

Assembly

Line 1

𝐒𝟒
Painting

Line 1

Assembly

Line 1

Painting

Line 2

Assembly

Line 2

Painting

Line 2

Assembly

Line 1

17

A Gangrade,, B Agrawal and S Kumar

Each chromosome represents a possible solution to the problem, with assignments of models to

painting and assembly lines.

We aim to select the best solutions that minimize production time.

Step 2

Table 3: Offspring Generation (Crossover)

Offspring are generated by performing crossover between selected parent solutions. Here, we use

a one-point crossover method.

In the crossover, the offspring inherit genes from each parent based on the crossover point. In this

case, the Sedan assignment is used as the crossover point.

Step 3: Mutation Table:

Mutation is applied to introduce diversity in the population by randomly altering one or more

assignments in the offspring.

Table 4

Offspring Mutation Applied New Solution After Mutation

Offspring 1
Change Mini XUV

Assignment

XUV: P1-A2, Sedan: P1-A2, Mini XUV: P1-

A1

Offspring 2 Change Sedan Assignment
XUV: P2-A1, Sedan: P1-A2, Mini XUV: P1-

A1

Mutations introduce new possible assignments by altering one random part of the solution. For

example, Mini XUV’s assignment is mutated in Offspring 1, and Sedan’s assignment is mutated

in Offspring 2.

Step 4: Local Search Optimization (Memetic Algorithm Phase):

This step involves improving the offspring by applying a local search to minimize conflicts and

improve the objective function (e.g., minimizing production time).

Table 5

Parent 1 (S1)

Parent 2 (S2)

Crossover

Point
Offspring 1 Offspring 2

S1 (XUV: P1-A2,

Sedan: P2-A1,

Mini XUV: P1-A1)

S2 (XUV: P2-A1,

Sedan: P1-A2, Mini

XUV: P2-A2)

Between

Sedan and

Mini XUV

XUV: P1-A2,

Sedan: P1-A2,

Mini XUV: P2-A2

XUV: P2-A1,

Sedan: P2-A1,

Mini XUV: P1-A1

Offspring Local Search Improvement Improved Solution

Offspring

1

Check and adjust conflict

between Mini XUV assignments.

XUV: P1-A2, Sedan: P1-A2, Mini XUV: P1-

A2 (removes conflict)

Offspring

2

Adjust Sedan assignment to

avoid capacity constraint

violation.

XUV: P2-A1, Sedan: P2-A2, Mini XUV: P1-

A1 (improves capacity balance)

18

Adaptive Memetic Algorithm for Solving Complex Graph Coloring Problem

The local search is applied to improve the quality of the offspring by removing conflicts (e.g.,

ensuring model compatibility or capacity limits are respected).

Step 5: Final Solution Table:

After crossover, mutation, and local search, we select the best solutions (offspring) to form the

next generation or finalize the optimal solution.

Table 6

Final

Solutio

n

XUV

Paintin

g Line

XUV

Assembl

y Line

Sedan

Paintin

g Line

Sedan

Assembl

y Line

Mini

XUV

Paintin

g Line

Mini

XUV

Assembl

y Line

Objective

(Productio

n Time)

Solutio

n 1

Painting

Line 1

Assembly

Line 2

Painting

Line 1

Assembly

Line 2

Painting

Line 2

Assembly

Line 1

Minimized

Production

Time

Solutio

n 2

Painting

Line 2

Assembly

Line 1

Painting

Line 2

Assembly

Line 1

Painting

Line 1

Assembly

Line 2

Minimized

Production

Time

Summary:

 Initial Population: Four possible solutions are generated.

 Offspring Generation: Two offspring are created using crossover.

 Mutation: Random mutation is applied to diversify the offspring.

 Local Search: Further optimization is performed to remove conflicts and improve the

objective function.

 Final Solution: The best solutions (with minimized production time) are selected.

3.2.2 Solution (Second Solution with Time Slot):

The goal of this problem is to schedule the production of 30 units (10 XUVs, 10 Sedans, and

10 Mini XUVs) across two painting lines (𝑷𝟏, 𝑷𝟐) and two assembly lines (𝑨𝟏, 𝑨𝟐), while

minimizing production time and avoiding conflicts. The solution will use the Memetic

Graph Coloring Algorithm, which combines evolutionary strategies (genetic algorithm)

with local search techniques.

Step 1: Problem Representation:

Each model’s painting and assembly tasks will be represented as nodes. The constraints

of model compatibility (no simultaneous painting for XUV and Sedan) and assembly line

restrictions are represented as edges between conflicting nodes.

Graph Nodes:

1. Painting nodes: 10 XUVs, 10 Sedans, 10 Mini XUVs.

19

A Gangrade,, B Agrawal and S Kumar

2. Assembly nodes: 10 XUVs, 10 Sedans, 10 Mini XUVs.

Edges (Conflicts):

1. XUV and Sedan cannot be painted at the same time on the same line.

2. XUVs must be assembled on 𝑨𝟏, while Sedans and Mini XUVs must be

assembled on 𝑨𝟐.

3. No overlapping tasks are allowed (i.e., one model cannot be both painted and

assembled simultaneously).

Step 2: Initial Population (Chromosomes):

Each chromosome represents a possible solution, where tasks (painting and assembly)

are scheduled in different time slots on specific lines. The chromosome contains

assignments of tasks, each task associated with:

 A painting or assembly line.

 A time slot.

A chromosome can be represented like this:

Explanation of Chromosomes

 Time Slot: Indicates the slot in which tasks are scheduled.

 Painting Line 𝑷𝟏/𝑷𝟐: Indicates the car model being painted on each line in a given time

slot.

 Assembly Line 𝑨𝟏/𝑨𝟐: Indicates the car model being assembled on each line in a given

time slot.

Table 7: Chromosome -1

Time

Slot
Painting Line 𝑷𝟏 Painting Line 𝑷𝟐 Assembly Line 𝑨𝟏

Assembly Line

𝑨𝟐

Slot 1 1-unit XUV (2 hrs)
1-unit Sedan

(3 hrs)
1-unit XUV (3 hrs)

2 units Sedan (2

hrs each)

Slot 2 1 unit XUV (2 hrs) 1 unit Sedan (3 hrs) 1-unit XUV (3 hrs)
2 units Sedan (2

hrs each)

Slot 3
2 units Mini XUV

(1 hr each)
1 unit Sedan (3 hrs) 1-unit XUV (3 hrs)

2 units Mini XUV

(2 hrs each)

Slot 4
2 units Mini XUV

(1 hr each)

2 units Sedan (3 hrs

each)
1-unit XUV (3 hrs)

3 units Mini XUV

(2 hrs each)

Slot 5
2 units XUV (2 hrs

each)
Idle 1-unit XUV (3 hrs) Idle

Slot 6
2 units XUV (2 hrs

each)

2 units Sedan (3 hrs

each)

2 units XUV (3 hrs

each)

2 units Mini XUV

(2 hrs each)

Slot 7 Idle
2 units Sedan (3 hrs

each)
Idle

1 unit Mini XUV

(2 hrs)

Slot 8 1 unit Mini XUV 1 unit Sedan (3 hrs) Idle Idle

20

Adaptive Memetic Algorithm for Solving Complex Graph Coloring Problem

(1 hr)

Slot 9 Idle Idle Idle Idle

Slot 10 Idle Idle Idle Idle

Table 8: Chromosome -2

Time

Slot
Painting Line 𝑷𝟏 Painting Line 𝑷𝟐 Assembly Line 𝑨𝟏

Assembly Line

𝑨𝟐

Slot 1
2 units XUV (2 hrs

each)

2 units Sedan (3 hrs

each)
1 unit XUV (3 hrs)

2 units Sedan (2

hrs each)

Slot 2
2 units Mini XUV

(1 hr each)

2 units Sedan (3 hrs

each)
1 unit XUV (3 hrs)

2 units Mini XUV

(2 hrs each)

Slot 3
2 units XUV (2 hrs

each)

2 units Mini XUV

(1 hr each)

2 units XUV (3 hrs

each)

2 units Mini XUV

(2 hrs each)

Slot 4
2 units Mini XUV

(1 hr each)
Idle

2 units XUV (3 hrs

each)

1 unit Mini XUV

(2 hrs)

Slot 5 1 unit XUV (2 hrs)
2 units Sedan (3 hrs

each)
1 unit XUV (3 hrs) Idle

Slot 6
1 unit Mini XUV

(1 hr)

2 units Sedan (3 hrs

each)
1 unit XUV (3 hrs)

2 units Sedan (2

hrs each)

Slot 7
2 units XUV (2 hrs

each)

2 units Sedan (3 hrs

each)
Idle

2 units Mini XUV

(2 hrs each)

Slot 8 Idle
2 units Sedan (3 hrs

each)
Idle Idle

Slot 9 Idle Idle Idle Idle

Slot 10 Idle Idle Idle Idle

Table 9: Chromosome -3

Time

Slot
Painting Line 𝑷𝟏 Painting Line 𝑷𝟐 Assembly Line 𝑨𝟏

Assembly Line

𝑨𝟐

Slot 1 1-unit XUV (2 hrs)
1-unit Sedan (3

hrs)
1-unit XUV (3 hrs)

2 units Sedan (2

hrs each)

Slot 2
2 units Mini XUV (1

hr each)

2 units Sedan (3

hrs each)

2 units XUV (3 hrs

each)

2 units Sedan (2

hrs each)

Slot 3
2 units XUV (2 hrs

each)

2 units Mini XUV

(1 hr each)

2 units XUV (3 hrs

each)

2 units Mini

XUV (2 hrs

each)

Slot 4
2 units Mini XUV (1

hr each)

1-unit Sedan (3

hrs)
Idle

2 units Mini

XUV (2 hrs

each)

Slot 5
2 units XUV (2 hrs

each)

2 units Sedan (3

hrs each)
1-unit XUV (3 hrs) Idle

Slot 6 2 units XUV (2 hrs 1-unit Sedan (3 1-unit XUV (3 hrs) 2 units Mini

21

A Gangrade,, B Agrawal and S Kumar

each) hrs) XUV (2 hrs

each)

Slot 7 Idle
2 units Sedan (3

hrs each)
1-unit XUV (3 hrs)

1 unit Mini XUV

(2 hrs)

Slot 8
2 units Mini XUV (1

hr each)
Idle Idle Idle

Slot 9 Idle Idle Idle Idle

Slot 10 Idle Idle Idle Idle

Step 3: Fitness Function

We now evaluate the fitness of each chromosome, where fitness is determined by:

1. Minimizing idle time on the painting and assembly lines.

2. Avoiding conflicts (e.g., no XUV and Sedan painted on the same line).

3. Balancing the workload on the lines to ensure optimal use.

For each chromosome:

 Count the total production time across all tasks (paint and assemble).

 Count the idle time (slots where no task is performed).

 Apply penalties if constraints are violated.

Fitness Explanation:

 The fitness score represents how well the schedule minimizes idle time relative to the

total time. A higher fitness score indicates more efficient use of the painting and assembly

lines.

 The formula for fitness is calculated as:

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =
𝑇𝑎𝑠𝑘 𝑇𝑖𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 (𝑇𝑎𝑠𝑘 𝑇𝑖𝑚𝑒 + 𝐼𝑑𝑙𝑒 𝑇𝑖𝑚𝑒)

Table 10: Fitness Calculation Table:

Chromosome

Line

Task Time

(hrs)

Idle Time

(hrs)

Total Time

(Task + Idle)

Fitness (Task

Time / Total

Time)

Chromosome

1

Painting Line

𝑷𝟏
18 11 29

18
29⁄ = 0.621

Painting Line

𝑷𝟐
18 12 30

18
30⁄ = 0.600

Assembly

Line 𝑨𝟏
15 15 30

15
30⁄ = 0.500

Assembly

Line 𝑨𝟐
16 12 28

16
28⁄ = 0.571

Total 67 50 117 67
117⁄ = 0.573

Chromosome Painting Line 16 13 29 16
29⁄ = 0.552

22

Adaptive Memetic Algorithm for Solving Complex Graph Coloring Problem

 Chromosome 3 has the highest fitness score of 0.583, indicating that it uses the lines more

efficiently than Chromosomes 1 and 2.

Summary:

 Chromosome 1 Fitness = 0.573

 Chromosome 2 Fitness = 0.574

 Chromosome 3 Fitness = 0.583 (Best Performing)

Step 4: Offspring:

We'll perform crossover between Chromosome 1 and Chromosome 2 and between

Chromosome 2 and Chromosome 3. The crossover point is the middle of the schedule (after

Slot 5).

Table 11: Offspring 1 (from Chromosome 1 and Chromosome 2):

Time

Slot
Painting Line 𝑷𝟏 Painting Line 𝑷𝟐 Assembly Line 𝑨𝟏

Assembly Line

𝑨𝟐

Slot 1 1 unit XUV (2 hrs) 1 unit Sedan (3 hrs) 1 unit XUV (3 hrs)
2 units Sedan (2

hrs each)

Slot 2 1 unit XUV (2 hrs) 1 unit Sedan (3 hrs) 1 unit XUV (3 hrs)
2 units Mini XUV

(2 hrs each)

Slot 3
2 units Mini XUV

(1 hr each)
1 unit Sedan (3 hrs)

2 units XUV (3 hrs

each)

2 units Mini XUV

(2 hrs each)

Slot 4
2 units Mini XUV

(1 hr each)

2 units Sedan (3 hrs

each)
Idle

3 units Mini XUV

(2 hrs each)

2 𝑷𝟏

Painting Line

𝑷𝟐
18 10 28

18
28⁄ = 0.643

Assembly

Line 𝑨𝟏
14 16 30

14
30⁄ = 0.467

Assembly

Line 𝑨𝟐
18 10 28

18
28⁄ = 0.643

Total 66 49 115 66
115⁄ = 0.574

Chromosome

3

Painting Line

𝑷𝟏
17 12 29

17
29⁄ = 0.586

Painting Line

𝑷𝟐
17 11 28

17
28⁄ = 0.607

Assembly

Line 𝑨𝟏
16 14 30

16
30⁄ = 0.533

Assembly

Line 𝑨𝟐
17 11 28

17
28⁄ = 0.607

Total 67 48 115 67
115⁄ = 0.583

23

A Gangrade,, B Agrawal and S Kumar

Slot 5
2 units Mini XUV

(1 hr each)
1 unit Sedan (3 hrs) Idle Idle

Slot 6
2 units XUV (2 hrs

each)

1units Sedan (3 hrs

each)
1 unit XUV (3 hrs)

2 units Mini XUV

(2 hrs each)

Slot 7 Idle 1 unit Sedan (3 hrs) Idle
2 units Mini XUV

(2 hrs each)

Slot 8
2 units Mini XUV

(1 hr each)
1 unit Sedan (3 hrs) Idle

2 units Mini XUV

(2 hrs each)

Slot 9 Idle Idle Idle Idle

Slot 10 Idle Idle Idle Idle

Table 12: Offspring 2 (from Chromosome 2 and Chromosome 3):

Time Slot Painting Line 𝑷𝟏
Painting Line

𝑷𝟐

Assembly Line

𝑨𝟏

Assembly Line

𝑨𝟐

Slot 1 1 unit XUV (2 hrs)
2 units Sedan (3

hrs each)

1 unit XUV (3

hrs)

2 units Sedan (2

hrs each)

Slot 2 1 unit Mini XUV (1 hr)
1 unit Sedan (3

hrs)

1 unit XUV (3

hrs)

2 units Mini

XUV (2 hrs

each)

Slot 3 1 unit XUV (2 hrs)
1 unit Sedan (3

hrs)

2 units XUV (3

hrs each)

1 unit Sedan (2

hrs)

Slot 4
2 units Mini XUV (1 hr

each)
Idle

2 units XUV (3

hrs each)

2 units Mini

XUV (2 hrs

each)

Slot 5
2 units Mini XUV (1 hr

each)

1 unit Sedan (3

hrs)
Idle Idle

Slot 6
2 units XUV (2 hrs

each)

2 units Sedan (3

hrs each)

1 unit XUV (3

hrs)

2 units Mini

XUV (2 hrs

each)

Slot 7 Idle
1 unit Sedan (3

hrs)
Idle

2 units Mini

XUV (2 hrs

each)

Slot 8
2 units Mini XUV (1 hr

each)

1 unit Sedan (3

hrs)
Idle

2 units Mini

XUV (2 hrs

each)

Slot 9 Idle Idle Idle Idle

Slot 10 Idle Idle Idle Idle

Mutation

Mutation randomly alters the schedule by switching the order of tasks in one slot. Let's apply

mutation to Offspring Mutation applied on Slot 6: Swap 2 units of Mini XUV and 1 unit of

Sedan in Slot 6 of Painting Line 𝑃2.

24

Adaptive Memetic Algorithm for Solving Complex Graph Coloring Problem

Table 13

Final Solution Table

Here’s the final solution, considering the offspring’s fitness scores. After mutation, we select the

offspring with the highest fitness score.

Table 14

Time Slot
Painting

Line 𝑷𝟏

Painting

Line 𝑷𝟐

Assembly

Line 𝑨𝟏

Assembly

Line 𝑨𝟐

Idle Time

Slot 1
1 unit XUV

(2 hrs)

1 unit Sedan

(3 hrs)

1 unit XUV

(3 hrs)

2 units Sedan

(2 hrs each)
1 hr

Slot 2
1 unit XUV

(2 hrs)

1 unit Sedan

(3 hrs)

1 unit XUV

(3 hrs)

2 units Mini

XUV (2 hrs

each)

1 hr

Slot 3

2 units Mini

XUV (1 hr

each)

1 unit Sedan

(3 hrs)

2 units XUV

(3 hrs each)

2 units Mini

XUV (2 hrs

each)

1 hr

Slot 4

2 units Mini

XUV (1 hr

each)

2 units Sedan

(3 hrs each)
Idle

3 units Mini

XUV (2 hrs

each)

3hrs (𝑨𝟏)

Slot 5

2 units Mini

XUV (1 hr

each)

Idle Idle Idle 2 hrs (𝑷𝟐)

Slot 6
2 units XUV

(2 hrs each)

2 units Mini

XUV (1 hr

each)

1 unit XUV

(3 hrs)

2 units Mini

XUV (2 hrs

each)

None

Slot 7 Idle
1 unit Sedan

(3 hrs)
Idle

1 unit Mini

XUV (2 hrs)
2 hrs (𝑷𝟏, 𝑨𝟏)

Slot 8

2 units Mini

XUV (1 hr

each)

1 unit Sedan

(3 hrs)
Idle Idle 2 hrs (𝑨𝟏, 𝑨𝟐)

Slot 9 Idle Idle Idle Idle 3 hrs

Slot 10 Idle Idle Idle Idle 3 hrs

Time Slot
Painting Line

𝑷𝟏

Painting Line

𝑷𝟐

Assembly Line

𝑨𝟏

Assembly Line

𝑨𝟐

Offspring 1

(Post-

Mutation) Slot

6

2 units XUV (2

hrs each)

2 units of Mini

XUV

1 unit XUV (3

hrs)

2 units Mini

XUV (2 hrs

each)

25

A Gangrade,, B Agrawal and S Kumar

Explanation of Idle Time:

 Idle time is calculated based on the unused time for each painting and assembly line in

each slot.

 Total Idle Time = Sum of idle hours across all time slots for all lines.

Idle Time Calculation:

 Slot 1: Idle time = 1 hr (P1 finishes at 2 hrs, while P2 runs for 3 hrs)

 Slot 2: Idle time = 1 hr (P1 finishes at 2 hrs, while P2 runs for 3 hrs)

 Slot 3: Idle time = 1 hr (P1 finishes at 2 hrs, while P2 runs for 3 hrs)

 Slot 4: Idle time = 3 hrs (Assembly Line A1is idle for the entire slot)

 Slot 5: Idle time = 2 hrs (Painting Line P2 is idle for the entire slot)

 Slot 6: No idle time (Both painting and assembly lines are fully utilized)

 Slot 7: Idle time = 2 hrs (P1 and A1 are idle for the entire slot)

 Slot 8: Idle time = 2 hrs (A1 and A2 are idle for the entire slot)

 Slot 9: Idle time = 3 hrs (All lines are idle)

 Slot 10: Idle time = 3 hrs (All lines are idle)

Total Idle Time:

Total Idle Time= 1 + 1 + 1 + 3 + 2 + 0 + 2 + 2 + 3 + 3 = 18 hours

Step-by-Step Production Time Calculation

Painting Time:

 XUV: 10 𝑢𝑛𝑖𝑡𝑠 × 2 ℎ𝑜𝑢𝑟𝑠 𝑒𝑎𝑐ℎ = 20 ℎ𝑜𝑢𝑟𝑠.

 Sedan: 10 𝑢𝑛𝑖𝑡𝑠 × 3 ℎ𝑜𝑢𝑟𝑠 𝑒𝑎𝑐ℎ = 30 ℎ𝑜𝑢𝑟𝑠.

 Mini XUV: 10 𝑢𝑛𝑖𝑡𝑠 × 1 ℎ𝑜𝑢𝑟 𝑒𝑎𝑐ℎ = 10 ℎ𝑜𝑢𝑟𝑠.

Total painting time = 20 hours (XUV) + 30 hours (Sedan) + 10 hours (Mini XUV)

 = 60 hours.

Assembly Time:

 XUV: 10 𝑢𝑛𝑖𝑡𝑠 × 3 ℎ𝑜𝑢𝑟𝑠 𝑒𝑎𝑐ℎ = 30 ℎ𝑜𝑢𝑟𝑠.

 Sedan: 10 𝑢𝑛𝑖𝑡𝑠 × 2 ℎ𝑜𝑢𝑟𝑠 𝑒𝑎𝑐ℎ = 20 ℎ𝑜𝑢𝑟𝑠.

 Mini XUV: 10 𝑢𝑛𝑖𝑡𝑠 × 2 ℎ𝑜𝑢𝑟𝑠 𝑒𝑎𝑐ℎ = 20 ℎ𝑜𝑢𝑟𝑠.

Total assembly time = 30 hours (XUV) + 20 hours (Sedan) + 20 hours (Mini XUV) = 70 hours.

Total Production Time:

Total production time = Total painting time + Total assembly time

Total Production Time= 60 ℎ𝑜𝑢𝑟𝑠 (𝑝𝑎𝑖𝑛𝑡𝑖𝑛𝑔) + 70 ℎ𝑜𝑢𝑟𝑠 (𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦) = 𝟏𝟑𝟎 ℎ𝑜𝑢𝑟𝑠

26

Adaptive Memetic Algorithm for Solving Complex Graph Coloring Problem

4.Conclusion

In this study, we addressed the complex production scheduling problem involving three car

models (XUV, Sedan, and Mini XUV) with specific constraints related to model compatibility,

painting line capacity, and assembly line requirements. By applying the Memetic Graph Coloring

Algorithm, we effectively minimized the total production time while ensuring efficient utilization

of resources. The memetic algorithm, combining graph coloring with evolutionary operators such

as crossover and mutation, proved to be an effective solution for handling conflicting tasks and

optimizing the scheduling process. Through the graph-based representation of tasks, we were able

to assign car models to time slots on painting and assembly lines while respecting operational

constraints. Mutation operations introduced necessary diversity in the scheduling process,

allowing us to reduce idle time and improve the flexibility of the production schedule. Our results

demonstrate that the algorithm achieved an optimized schedule for 10 units of each model,

minimizing idle time and ensuring that both painting and assembly lines were utilized efficiently.

This approach not only outperformed traditional scheduling methods but also showcased the

potential of using memetic algorithms for solving real-world production scheduling problems.

Future research could explore the integration of additional factors such as maintenance schedules,

labor shifts, or dynamic demand changes, further enhancing the applicability of this approach to

complex industrial scenarios.

 References

1. Morgenstern, C.A., Shapiro, H.D. Heuristics for rapidly four-coloring large planar

graphs. Algorithmica 6, 869–891 (1991). https://doi.org/10.1007/BF01759077

2. Aardal, K., Hoesel, S., Koster, A., Mannino, C. and Sassano, A. (2003), Models and solution

techniques for frequency assignment problems, Q. J. Belg. Fr. Ital. Oper. Res. Soc., 1(4), 261-

317.

3. Dib, M., Caminada, A. and Mabed, H. (2010), Frequency management in radio military

networks, INFORMS Telecom 2010, 10th INFORMS Telecommunications Conference

Montreal, Canada.

4. Galinier, P. and Hertz, A. (2006), A survey of local search methods for graph coloring,

Comput. Oper. Res. 33, 2547-2562.

5. Malaguti, E., Monaci, M. and Toth, P. (2011), An exact approach for the vertex coloring

problem, Discret. Optim., 8 (2), 174-190.

6. Malviya, A., Agrawal, B. and Kumar, S. (2023), A New approach on star chromatic number

of splitting complete bipartite graph, Samdarshi, 16 (5), 3128-3132.

7. Malviya, A., Agrawal, B. and Kumar, S. (2024), Graph coloring algorithm for course time

table scheduling problem, ShodhKosh: Journal of Visual and Performing Arts, 5 (3), 452-

460.

8. Malviya, A., Agrawal, B., Kumar, S. and Mansuri, A. (2022), Study of algorithm for coloring

in various graph, International Journal of Statistics and Applied Mathematics, 7(2), 88-91.

	Table 1: This table provides a general overview of each method's characteristics.
	Note: Time Complexity: V = number of vertices, E = number of edges
	Space Complexity: V = number of vertices
	Color Usage: How efficiently colors are used (Good: reasonable, Excellent: optimal)
	Quality: Solution quality (Fair: acceptable, Good: good, Excellent: optimal)
	2. Memetic Algorithms (MAs)
	3.Real-Life Problems
	3.1.2 Problem: "Painting and Assembly Line Scheduling"
	Company: Abhyudit Automotive
	Goal: Schedule production of three car models (XUV, Sedan, Mini XUV) on two painting lines (,𝐏-𝟏. and ,𝐏-𝟐.) and two assembly lines (,𝐀-𝟏. and ,𝐀-𝟐.) to minimize production time and ensure efficient use of resources.
	Constraints:
	1. Model Compatibility: XUV and Sedan cannot be painted on the same line, while Mini XUV can be painted on either line.
	2. Assembly Line Restrictions: XUV requires Assembly Line ,𝐀-𝟏., while Sedan and Mini XUV require Assembly Line ,𝐀-𝟐..
	3. Painting Time: Each model has a different painting time: XUV (2 hours), Sedan (3 hours), and Mini XUV (1 hours).
	4. Assembly Time: Each model has a different assembly time: XUV (3 hours), Sedan (2 hours), and Mini XUV (2 hours).
	Objective: Schedule the production of 10 units of each model to minimize the total production time, ensuring that:
	1. No two models that cannot be painted on the same line are scheduled simultaneously.
	2. Each model is assembled on the required assembly line.
	3. The painting and assembly lines are used efficiently, minimizing idle time.
	Graph Coloring Representation:
	i. Vertices: Production slots (time intervals)
	ii. Edges: Conflicts (two models that cannot be painted on the same line or assembled on the same line)
	iii. Colors: Models (XUV, Sedan, and Mini XUV)
	3.2 Mathematical Model of problem
	Let's break down the problem into a mathematical model:
	Variables:
	 ,𝒙-,𝜶-𝟏.., ,𝒙-,𝜶-𝟐.., ,𝒙-,𝜷-𝟏.., ,𝒙-,𝜷-𝟐.., ,𝒙-,𝜸-𝟏.., ,𝒙-,𝜸-𝟐..: Binary variables representing the assignment of models to painting lines (1 if assigned, 0 otherwise)
	 ,𝒚-,𝜶-𝟏.., ,𝒚-,𝜶-𝟐.., ,𝒚-,𝜷-𝟏.., ,𝒚-,𝜷-𝟐.., ,𝒚-,𝜸-𝟏.., ,𝒚-,𝜸-𝟐..: Binary variables representing the assignment of models to assembly lines (1 if assigned, 0 otherwise)
	 ,𝒕-,𝒑-𝟏.., ,𝒕-,𝒑-𝟐..: Production times for painting lines
	 ,𝒕-,𝑨-𝟏.., ,𝒕-,𝑨-𝟐..: Production times for assembly lines
	Note: 𝜶:𝑿𝑼𝑽 , 𝜷:𝑺𝒆𝒅𝒂𝒏, 𝜸:𝑴𝒊𝒏𝒊 𝑿𝑼𝑽
	Objective
	Minimize total production time:
	minimize: ,𝒕-,𝒑-𝟏..+ ,𝒕-,𝒑-𝟐..+,𝒕-,𝑨-𝟏..+,𝒕-,𝑨-𝟐..
	Where ,𝒕-,𝒑-𝟏..+ ,𝒕-,𝒑-𝟐.. are the production times for painting lines 1 and 2.
	,𝒕-,𝑨-𝟏..+,𝒕-,𝑨-𝟐..are the production times for assembly lines 1 and 2.
	Constraints Model assignment to painting lines:
	,𝒙-,𝜶-𝟏..+ ,𝒙-,𝜶-𝟐..=𝟏 (Model XUV assigned to one painting line)
	,𝒙-,𝜷-𝟏..+ ,𝒙-,𝜷-𝟐..=𝟏 (Model Sedan assigned to one painting line)
	,𝒙-,𝜸-𝟏..+ ,𝒙-,𝜸-𝟐..=𝟏 (Model Mini XUV assigned to one painting line)
	Model assignment to assembly lines:
	,𝒚-,𝜶-𝟏..+ ,𝒚-,𝜶-𝟐..=𝟏 (Model XUV assigned to one assembly line)
	,𝒚-,𝜷-𝟏..+,𝒚-,𝜷-𝟐..=𝟏 (Model Sedan assigned to one assembly line)
	,𝒚-,𝜸-𝟏..+ ,𝒚-,𝜸-𝟐..=𝟏 (Model Mini XUV assigned to one assembly line)
	Painting line capacity:
	,𝒕-,𝒑-𝟏..≤𝟖 (max production time for ,𝐏-𝟏.)
	,𝒕-,𝒑-𝟐..≤𝟖 (max production time for ,𝐏-𝟐.)
	Assembly line capacity:
	,𝒕-,𝑨-𝟏..≤𝟏𝟎 (max production time for ,𝑨-𝟏.)
	,𝒕-,𝑨-𝟐..≤𝟏𝟎 (max production time for ,𝑨-𝟐.)
	Model compatibility:
	Ensure that modals are not placed on incompatible lines (avoid conflicts between models and lines)
	,𝒙-,𝜶-𝟏..+ ,𝒚-,𝜶-𝟐..≤𝟏 (Model XUV not on ,𝑷-𝟏. and ,𝑨-𝟏.)
	,𝒙-,𝜷-𝟏..+ ,𝒚-,𝜷-𝟐..≤𝟏 (Model Sedan not on ,𝑷-𝟏. and ,𝑨-𝟐.)
	,𝒙-,𝜸-𝟏..+ ,𝒙-,𝜸-𝟐..≤𝟏 (Model Mini XUV not on ,𝑷-𝟏. and ,𝑨-𝟏.)
	3.2.1 Solution
	Solution can be represented as a binary vector like
	𝑺={,𝒙-,𝜶-𝟏.., ,𝒙-,𝜶-𝟐.., ,𝒙-,𝜷-𝟏.., ,𝒙-,𝜷-𝟐.., ,𝒙-,𝜸-𝟏.., ,𝒙-,𝜸-𝟐..,𝒚-,𝜶-𝟏.., ,𝒚-,𝜶-𝟐.., ,𝒚-,𝜷-𝟏.., ,𝒚-,𝜷-𝟐.., ,𝒚-,𝜸-𝟏.., ,𝒚-,𝜸-𝟐..}
	 3 models (XUV, Sedan, Mini XUV),
	 2 painting lines (,𝐏-𝟏.,,𝐏-𝟐.),
	 2 assembly lines (,𝐀-𝟏., ,𝐀-𝟐.).
	 ,𝐱-,𝛂-𝟏..=𝟏 if the XUV is assigned to painting line ,𝐏-𝟏.
	 ,𝐲-,𝛂-𝟏..=𝟏 if the XUV is assigned to assembly line ,𝐀-𝟏.
	 ,𝒙-,𝜶-𝟏.., ,𝒙-,𝜶-𝟐..: assignment of Model XUV to Painting Line 1 or 2.
	 ,𝒙-,𝜷-𝟏.., ,𝒙-,𝜷-𝟐..: assignment of Model Sedan to Painting Line 1 or 2.
	 ,𝒙-,𝜸-𝟏.., ,𝒙-,𝜸-𝟐..: assignment of Model Mini XUV to Painting Line 1 or 2.
	 ,𝒚-,𝜶-𝟏.., ,𝒚-,𝜶-𝟐..: assignment of Model XUV to Assembly Line 1 or 2.
	 ,𝒚-,𝜷-𝟏.., ,𝒚-,𝜷-𝟐..: assignment of Model Sedan to Assembly Line 1 or 2.
	 ,𝒚-,𝜸-𝟏.., ,𝒚-,𝜸-𝟐..: assignment of Model Mini XUV to Assembly Line 1 or 2.
	Valid Solution Criteria
	Model Assignment: Each model should be assigned to one painting and one assembly line (sum of assignments for each model=𝟏).
	Step 1: Initial Population Generation
	Step 2
	Table 3: Offspring Generation (Crossover)
	Step 3: Mutation Table:
	Step 4: Local Search Optimization (Memetic Algorithm Phase):
	Step 5: Final Solution Table:

	3.2.2 Solution (Second Solution with Time Slot):
	The goal of this problem is to schedule the production of 30 units (10 XUVs, 10 Sedans, and 10 Mini XUVs) across two painting lines (,𝑷-𝟏., ,𝑷-𝟐.) and two assembly lines (,𝑨-𝟏., ,𝑨-𝟐.), while minimizing production time and avoiding conflicts....
	Step 1: Problem Representation:
	Graph Nodes:
	Edges (Conflicts):
	Step 2: Initial Population (Chromosomes):
	Table 7: Chromosome -1
	Table 8: Chromosome -2

	Fitness Explanation:
	Summary:
	Total Idle Time:
	Step-by-Step Production Time Calculation
	Painting Time:
	Assembly Time:
	Total Production Time:

	References

