

Mangalayatan Journal of Man. J. Sci. Ind. Res.

Scientific and Industrial Research Volume 2 (1) (2025), 25203

 ISSN: 3049-2815

 Article

Received: 7 May 2025; Accepted: 15 May. 2025

Timestamp-Based Validation Approach for Detecting Stale Data in Asynchronous

Microservice Architecture

Sandeep Sharma1 and Vijay Pal Singh2

1 Department of Computer Engineering & Applications, Mangalayatan University, Aligarh
2 Department of Computer Engineering & Applications, Mangalayatan University, Aligarh

*Corresponding Author: 20230102_sandeep@mangalayatan.edu.in

Abstract

Data freshness is a crucial problem for microservice architectures as services are decoupled

and produce the effects of updates in an asynchronous manner. In these contexts, addressing

the issue of stale data across service boundaries is still a pressing issue. This paper introduces

the Timestamp-Based Validation Approach (TBVA), a lightweight method that can be

employed to identify stale information without the overhead of strong consistency models or a

central coordinating process. With TBVA, services can evaluate data freshness at query time

by referring to short-lived temporal metadata updated with recent update activity. This

metadata is kept outside in a cache store like Redis, administrated by expiration policies to

balance performance and reliability. Services detect and mark potentially stale data by

comparing the cache timestamp with the record’s modification timestamp in the database

before returning responses. The technique increases the integrity of cross-service data and

allows responsiveness and architectural freedom. TBVA is particularly suitable for event-

driven, asynchronous microservice systems, in which real-time correct processing is critical

while achieving global transactional consistency is also not feasible.

Keywords: Microservices, Data Freshness, Stale Data Detection, Distributed Systems

Consistency, Asynchronous Systems, Timestamp-Based Validation

1. Introduction

With the advance of microservice architectures in modern systems engineering, it becomes

more common to design for scalability, maintainability, and fault tolerance. Each service

works in a decoupled mode, maintaining its own data, talking over event streams or messaging

queues with others. This division enables independent functioning, increasing the system’s

flexibility and facilitating accelerated growth. But microservice systems come with

architectural benefits, and they also bring challenges in keeping data fresh and consistent

among independently running parts of the system.

The main difficulty in such architectural designs emerges from maintaining data consistency,

which requires users to access updated information from other services. Under eventual

consistency models and asynchronous communication, services can access old data versions

because the data still needs to be updated and distributed throughout the system. Practical issues

in e-commerce and real-time analytics and financial systems face major challenges due to their

S. Sharma and V. P. Singh

28

dependence on recent data for correct and prompt operations.

Traditional methods for stale data management through quorum-based reads or distributed

locks and coordination protocols usually lead to service autonomy restrictions, and loose

coupling violations as well as performance slowdowns. The implemented solutions become

unnecessary for systems that maintain strong consistency only through staleness detection. The

development of simple decentralized data freshness monitoring methods has become necessary

because services require real-time freshness checks without relying on blocking operations or

centralized oversight.

TBVA represents the Timestamp-Based Validation Approach, which serves as an effective

technique for asynchronous microservice environments to detect possible data staleness.

TBVA functions by identifying update intention via temporal metadata—specifically, a

transient timestamp maintained outside the system in a fast-access cache like Redis. When a

service starts an update, the service records a timestamp in Redis associated with the GUID of

data. This metadata is short-lived with a time-to-live (TTL), and lives only long enough to

justify read operations happening in the near future.

A read action is carried out by the querying service to read a record from its local store and

metadata from Redis. Then, the timestamp Tₘ of update intent is compared with the last-

modified timestamp Td of the data record. If the timestamp from the metadata is newer than

the last time the data was written, It demonstrates that the record is potentially stale; otherwise,

it’s fresh. If no metadata is discovered, we default to assuming freshness to keep things

responsive. TBVA is ideal for event driven architectures where services emit update events

and data asynchronously persisted. It allows us to validate freshness in real-time without

blocking read or couple services too close together. With a simple and efficient mechanism of

comparing timestamps, TBVA is well-suited to be a scalable and easy-to-integrate solution to

enhance data correctness in distributed systems. This paper provides an in-depth description of

the TBVA design, operational logic, implementation trade-offs, and presents a use case along

with the architectural diagrams that illustrate its capabilities toward use in actual systems.

2. Related work

Research efforts have continuously targeted maintaining fresh data in distributed systems and

microservice architectures since the early years. The shift from monolithic systems to

microservices creates major challenges in ensuring that all services work using correct and

contemporary information. Researchers have developed several methods to manage

consistency constraints, identify dormant data and reduce eventual inconsistency issues

between services.

When developers aim to enhance freshness guarantees they turn to the use of quorum-based

consistency models which can be found in systems like Amazon Dynamo and Apache

Cassandra. These systems allow users to set W and R replica crossover requirements to adjust

their consistency levels. The implementation of quorum techniques works effectively, yet it

requires substantial coordination effort between servers thus it fits better in data storage

systems, they are unsuitable for microservices that prioritize non-blocking reads and

decentralized state management. Additionally, such models can degrade performance in

latency-sensitive applications due to their coordination overhead [1].

Timestamp-Based Validation Approach for Detecting Stale Data in Asynchronous Microservice

Architecture

29

Version vector and vector clocks allow distributed systems to track causal updates via logical

timestamps. Applications using Riak as their key-value store frequently encounter multiple

conflicting versions called siblings through their eventually consistent operation. Through

dependency tracking COPS continues the model from COPS to establish causal consistency

for operations [2]. Both systems become difficult to scale and coordinate when the number of

dependent services rises. The expansion of Riak vector clocks becomes unwieldy when many

concurrent write operations occur at the same time but COPS mandates service knowledge and

operational dependency which disrupts the independent nature of microservices. These systems

require uniform versioning and coordination protocols even though this assumption does not

match the heterogeneity of cloud-native environments.

Few new models rely on timestamps to validate the data freshness without blocking system

operations. For instance, Parekh et al. GA introduced time-based distributed caching with

short-living metadata for web systems [3]. But this is at the cache layer, and thus the validation

happens before the query goes to the core business logic. This presents the risk of false

freshness, as it could be the case that the cached metadata is recent enough to look valid, but

the underlying data has grown old because of missed cache updates or considerable re-caching

delay.

Cloud-native HTAP systems from the present era place timestamp-based validation logic

directly inside their database layer. The integrative nature doubles down on accuracy in

freshness validation, although it demands tight application-system integration at the application

storage interface. These systems demonstrate restricted portability because they operate poorly

in environments filled with decentralized microservices [4].

Serverless and log-structured systems implement timestamped logs to verify and retrieve state

information during state recovery operations. The Halfmoon platform uses log-optimal, fault-

tolerant methods that depend on timestamps to achieve consistency throughout its

asynchronous functions [5]. The asymmetric logging method enhances both execution

visibility and decreases coordination requirements [6]. These systems excel at implementing

consistency during event replay and fault recovery operations, but provide no solutions for

detecting stale data during runtime microservice data reads.

A study implemented timestamp-indexed validation strategies in time-series databases for

energy infrastructure by using Apache Druid to deliver fresh-time-aware query capabilities for

streams of asynchronous data [7]. This methodology produces successful results in controlled

environments but requires specific structured ingesting operations, which lead to generalization

problems when working with decentralized microservices. The integration process demands

collaboration between data schemas and query planners which reduces the individual autonomy

a service system operates with.

None of these approaches offer a low-cost way of verifying data freshness at the time of the

query within the application service itself, without the use of synchronized clocks, vector

clocks, or cross-service dependency tracking. The Timestamp-Based Validation Approach

(TBVA) fills this gap in that it makes use of ephemeral and TTL-bound metadata that a service

stores externally (e.g., in Redis) to let other services determine whether the data they just

retrieved is stale. As a result, it allows for real-time, decentralized validation without the need

S. Sharma and V. P. Singh

30

to coordinate, and, as such, is very suitable for asynchronous, event-driven architectures. In

contrast to both cache-level and database embedded freshness mechanisms, TBVA operates at

the application layer, allowing service autonomy and actionable freshness guarantees.

3. Methodology

 Time-Based Validation Approach (TBVA) delivers a flexible and distributed method to detect

outdated data throughout asynchronous service frameworks. TBVA operates differently from

traditional approaches by giving services the ability to check the freshness of their records with

temporal metadata when they query information. The section describes operational workflows

alongside component duties, which includes metadata management as well as architectural

prerequisites, and real-life usage descriptions, and formal validation logic elements.

3.1 Conceptual Model

All the services in distributed microservice frameworks operate independently with their

individual databases, using asynchronous protocols for communication. The choices made in

design lead to better scalability but present challenges for maintaining fresh data between

different services. The system controls update detection separately from data storage through

its TBVA design. The metadata layer in Redis operates as a transient system that tracks update

timestamps for data registration. Services can determine the staleness of data through metadata

saved without requiring central management.

3.2 Operational Workflow

 TBVA functions across two separate operational sequences that include both the write path as

well as the read path.

3.2.1 Write Path

1. A command service accepts requests for record adds or updates.

2. A metadata entry comprising the GUID and timestamp Tm, is immediately stored in

Redis with a Time To Live (TTL).

3. A message queue receives the entire data payload at the same time as metadata entry

storage occurs.

4. A subscribed worker service performs asynchronous updates to the service database

using timestamp Td.

3.2.2 Read Path:

1. When users make read requests the query service obtains the record from its database

along with updated timestamp (Td).

2. The service retrieves metadata information from Redis cache based on record GUID

fetch from database query.

Timestamp-Based Validation Approach for Detecting Stale Data in Asynchronous Microservice

Architecture

31

3. The service conducts a timestamp comparison between Tm, which represents Redis

metadata timestamp, and timestamp Td which represents the modified time of database

records.

4. If (Td >= Tm or CacheMetaData not exist) the record is flagged as fresh; otherwise, it

is considered stale.

Figure 1: Timestamp-Based Validation Approach (TBVA) Operational Model

Workflow.

3.3 System Components

1. Command Service: Begins the update operation and records the intent to update.

2. Query Service performs the data query and validation of its freshness.

3. Cache: Caches short-lived timestamp metadata with TTL, like Redis.

4. Message Broker: Update events gets transported asynchronously (E.g.., GCP

Pub/sub, Kafka).

5. Worker Service :Listens to the broker and update the database.

6. Service Database: Persists domain data for every service

3.4 Metadata Management

Redis allows metadata to survive only briefly after setting its TTL parameter length. The

system deems metadata inaccessible following its expiration time. During metadata

unavailability, the system operates with current data records by accepting specified risks of

temporary out-datedness. TTL parameters need adjustment based on the update speed and

freshness limits that apply to each service.

S. Sharma and V. P. Singh

32

3.5. Assumptions

The approach operates under the following assumptions:

1. All participating services maintain loosely synchronized clocks (e.g., via NTP).

2. The Redis cache and message broker are highly available and resilient.

3.6. Illustrative Use Case

A contemporary e-commerce platform featuring a microservice-based design includes two self-

contained services known as the Inventory Service and Order Service. The Inventory Service

retains product inventory data, which it updates automatically through warehouse events and

order transactions that occur in real time. Orders processed by the Order Service need to check

stock levels before accepting customer transactions.

During stock update registrations, such as deliveries or adjustments, the Inventory Service

sends events to the message queue and creates simultaneous Redis operations with validity

period timestamps. The Worker Service handles the stock data persistence work

asynchronously after consuming the original message from the Inventory Database.

The Inventory Service activates the stock update event, which triggers an order for a new

customer but the updated stock quantity is not yet written to the database. The Order Service

maintains incorrect stock levels because it obtains database information while the database

lacks awareness of a pending inventory update, leading to either rejected orders from valid

stock levels or events where invalid stock levels indicate surplus inventory.

At stock validation time the Query Component of the Order Service consults Redis through

TBVA. During validation, the Order Service checks Redis timestamp (Tₘ) against Inventory

record timestamp (Td) to determine database data freshness. The service indicates data potential

staleness when it detects that the Redis timestamp exceeds the record timestamp in the

database. The Order Service can confirm orders conditionally or display a warning after finding

this result because it could avoid placing incorrect orders.

TBVA enables distributed services to check and determine data freshness independently of

strict consistency requirements or coordinated operations. The approach maintains accurate

service interaction through its data detection system, along with maintaining standard e-

commerce system scalability and responsiveness values.

3.7. Performance and Scalability

 The O (1) execution time of Redis lookups maintains low latency delays.

 No distributed locks appear in the system design which also eliminates blocking of

reads and global coordination techniques.

 Transient metadata entries consume minimal memory space because they are small in

size.

 TBVA provides efficient high-speed real-time processing capabilities keeping data

freshness validation both accurate and powerful for massive throughput systems.

 To applies TBVA is very easily with the existing microservices since it applies

timestamp logic directly on top of the business data models without requiring service

modifications.

Timestamp-Based Validation Approach for Detecting Stale Data in Asynchronous Microservice

Architecture

33

4.System Architecture

The Timestamp-Based Validation Approach (TBVA) establishes a framework that enables

large-scale, decentralized data freshness validation among asynchronous microservice

programs. The system depends on CQRS architecture principles, as well as asynchronous

communication and temporal metadata to find outdated data instead of demanding strict

consistency.

4.1 Architectural Overview

The system contains multiple independent services that connect through the Command Service,

Query Service, Worker Service, Cache (Redis), Pub/Sub Queue (RabbitMQ or Kafka) and,

Database. The independently scalable services combine through asynchronous methods which

enhance fault tolerance, as well as responsiveness and modular design.

1. The Command Service accepts data update requests and simultaneously:

 Writes update intent (GUID + timestamp) into the Redis Cache.

 Publishes the full payload asynchronously to the Pub/Sub Queue.

2. The Worker Service consumes messages from the queue and persists updates into the

Database.

3. The Query Service handles read operations. It retrieves the latest record from the

Database and validates its freshness by comparing the database’s last-modified

timestamp with the timestamp retrieved from the Redis Cache metadata.

This pattern enables real-time data validation without introducing blocking reads or distributed

locks.

Figure 2: System Architecture of Timestamp-Based Validation Approach (TBVA)

4.2 Operation Flow and Interaction Sequence

The operational workflow is depicted in the sequence diagram below, highlighting the

interactions during both the add/update and Fetch operations.

4.2.1 Add/Update Operation

1. The Caller invokes SaveRecordAsync(GUID, data) on the Command Service.

S. Sharma and V. P. Singh

34

2. Two actions happen in parallel:

 PushToCacheAsync() stores metadata (GUID, timestamp Tm) in Redis.

 PushToQueueAsync() sends the data payload to the Pub/Sub Queue.

3. The Worker Service processes the queue message, transforms, and persists the data

using SaveRecord() into the Database.

4.2.2 Read Operation

1. The Caller initiates a read via GetRecord(GUID) on the Query Service.

2. The service:

 Retrieves the record and timestamp from the Database.

 Fetches the matching metadata from Redis.

3. A comparison is performed:

 If cacheTimestamp(Tm) is newer than dbTimestamp (Td), the record is flagged

as stale.

 If Cache Metadata does not Exist, than the record is flagged as fresh.

 If dbTimestamp (Td), is newer OR Equal cacheTimestamp(Tm), than the record

is flagged as fresh.

 Otherwise, record is flagged as stale.

The time-stamp verification mechanism grants users both fresh and stale data records with flag

to identify the data state.

Fig. 3. Sequence Diagram for TBVA-Based Update and Read Operations.

5. Discussion and Limitations

TBVA is a timestamp-based validation method that solves the well-known problem of

ensuring that stale data is not used in an asynchronous microservice architecture, whilst not

Timestamp-Based Validation Approach for Detecting Stale Data in Asynchronous Microservice

Architecture

35

impacting service autonomy and system performance. By adding a transient metadata tier

using in-memory database (Redis), TBVA separates the consistency validation from the

propagation of updates, and services can make local data freshness inferences without

distributed consensus or strong synchronization mechanisms.

TBVA shows good scalability due to low integration overhead. Each deployment can be

deployed independently and does not have a hard dependency on other components or systems

in the environment. Since read time complexity of in-memory cache like Redis is O(1), the

system is implemented with low latency in situations with a high number of concurrent users.

However, there exist some problems or limitations to TBVA. The approach depends on

loosely synchronized clocks across services; one with significant drift may cause false

positives in freshness evaluation. This can be averted by maintaining time synchronization on

all machines using NTP (Network Time Protocol) or similar mechanisms.

Redis metadata storage is the only weak link. If Redis becomes temporarily unavailable, or

loses data, services need to believe all database records are fresh which can make it look like

there's no staleness.TTL (Time-To-Live) setting is also very important. When TTLs are set

too low, metadata may expire before it can be verified, resulting in the missing of staleness

detection. On the other hand, using an excessively high TTL could lead to memory overhead

and maintaining outdated metadata. Performing effective TTL tuning should take into account

domain-specific update rates as well as the desired balance between freshness precision and

resource expenditure.

While TBVA works well on the staleness issue, it cannot resolve data conflicts nor maintain

causality. In very dynamic systems with fast consecutive updates, other techniques (e.g.,

version vectors) or conflict resolution mechanisms should be considered to boost TBVA.

In general, TBVA is a lightweight and cost-effective solution for identifying stale data in

event-driven, distributed systems. In the future, we should explore adaptive TTL management,

more resilient synchronization strategies, as well as large-scale experiments across globally

distributed service infrastructures.

6. Conclusion and Future Work

The Timestamp-Based Validation Approach (TBVA) is proposed as a simple option to identify

stale data in fully distributed microservice systems. From a TBVA perspective, clients can

check the freshness of data independently of the operations on storage, since TBVA decouples

the process of checking freshness from that of persistence. Read operations perform constant-

time validation using data in Redis cache metadata, together with asynchronous event

processing that maintains system scalability along with high performance.

TBVA provides a practical approach in scenarios when full transactional guarantees are

impossible, but data freshness is still important. Its merits are low latency, lightweight

architectural intrusion, and the retention of microservices' autonomy. Also, using short-lived

metadata with expiration policies, the system is both memory efficient and resistant to partial

failure. However, TBVA has its limits.It has number of limitations such as dependency on

roughly synchronized clocks, vulnerability to metadata TTL tuning and untamed conflict

resolution. Future work will investigate the incorporation of logical clock mechanisms in order

S. Sharma and V. P. Singh

36

to remove physical clock dependencies, exploiting adaptive TTL strategies due to system

dynamics, as well as techniques to improve conflict detection and resolution in the presence

of highly concurrent operations. In summary, TBVA fills the space between eventual

consistency and understanding data freshness in real-time, and offers a scalable and deployable

pattern for contemporary event-driven microservice systems.

Reference

1. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., et al. (2007). Dynamo: Amazon’s

highly available key-value store. Proceedings of the 21st ACM Symposium on Operating

Systems Principles (SOSP), 205–220. https://doi.org/10.1145/1294261.1294281

2. Lloyd, W., Freedman, M. J., Kaminsky, M., & Andersen, D. G. (2011). Don't settle for

eventual: Scalable causal consistency for wide-area storage with COPS. Proceedings of the

23rd ACM Symposium on Operating Systems Principles (SOSP), 23, 401–416.

http://mpaxos.com/teaching/ds/20fa/readings/cops.pdf

3. Parekh, J., Moroney, A., & Golani, L. (2021). A timestamp-based novel caching mechanism

for distributed web systems. International Journal of Advanced Computer Science.

https://www.researchgate.net/publication/344300301

4. Li, F. (2023). Modernization of databases in the cloud era: Building databases that run like

Legos. Proceedings of the VLDB Endowment, 16(13), 4140–4152.

5. Qi, S., Liu, X., & Jin, X. (2023). Halfmoon: Log-optimal fault-tolerant stateful serverless

computing. Proceedings of the ACM Symposium on Operating Systems Principles (SOSP),

2023.

6. Qi, S., Feng, H., Liu, X., & Jin, X. (2025). Efficient fault tolerance for stateful serverless

computing with asymmetric logging. ACM Transactions on Computer Systems, 2025.

7. Hadjichristofi, C., Diochnos, S., Andresakis, K., & others. (2024). Using time-series

databases for energy data infrastructures. Energies, 17(21), 5478.

https://doi.org/10.3390/en17215478

https://doi.org/10.1145/1294261.1294281
http://mpaxos.com/teaching/ds/20fa/readings/cops.pdf
https://www.researchgate.net/publication/344300301
https://doi.org/10.3390/en17215478

	Abstract
	1. Introduction
	2. Related work
	3. Methodology
	3.1 Conceptual Model
	3.2 Operational Workflow
	3.2.1 Write Path
	3.2.2 Read Path:
	3.3 System Components
	3.4 Metadata Management
	3.5. Assumptions
	3.6. Illustrative Use Case
	3.7. Performance and Scalability
	4.System Architecture
	4.1 Architectural Overview
	4.2 Operation Flow and Interaction Sequence
	4.2.1 Add/Update Operation
	4.2.2 Read Operation
	5. Discussion and Limitations
	6. Conclusion and Future Work
	Reference

