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Abstract 

Data freshness is a crucial problem for microservice architectures as services are decoupled 

and produce the effects of updates in an asynchronous manner. In these contexts, addressing 

the issue of stale data across service boundaries is still a pressing issue. This paper introduces 

the Timestamp-Based Validation Approach (TBVA), a lightweight method that can be 

employed to identify stale information without the overhead of strong consistency models or a 

central coordinating process. With TBVA, services can evaluate data freshness at query time 

by referring to short-lived temporal metadata updated with recent update activity. This 

metadata is kept outside in a cache store like Redis, administrated by expiration policies to 

balance performance and reliability. Services detect and mark potentially stale data by 

comparing the cache timestamp with the record’s modification timestamp in the database 

before returning responses. The technique increases the integrity of cross-service data and 

allows responsiveness and architectural freedom. TBVA is particularly suitable for event-

driven, asynchronous microservice systems, in which real-time correct processing is critical 

while achieving global transactional consistency is also not feasible. 
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1. Introduction 

With the advance of microservice architectures in modern systems engineering, it becomes 

more common to design for scalability, maintainability, and fault tolerance. Each service 

works in a decoupled mode, maintaining its own data, talking over event streams or messaging 

queues with others. This division enables independent functioning, increasing the system’s 

flexibility and facilitating accelerated growth. But microservice systems come with 

architectural benefits, and they also bring challenges in keeping data fresh and consistent 

among independently running parts of the system. 

The main difficulty in such architectural designs emerges from maintaining data consistency, 

which requires users to access updated information from other services. Under eventual 

consistency models and asynchronous communication, services can access old data versions 

because the data still needs to be updated and distributed throughout the system. Practical issues 

in e-commerce and real-time analytics and financial systems face major challenges due to their 
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dependence on recent data for correct and prompt operations. 

Traditional methods for stale data management through quorum-based reads or distributed 

locks and coordination protocols usually lead to service autonomy restrictions, and loose 

coupling violations as well as performance slowdowns. The implemented solutions become 

unnecessary for systems that maintain strong consistency only through staleness detection. The 

development of simple decentralized data freshness monitoring methods has become necessary 

because services require real-time freshness checks without relying on blocking operations or 

centralized oversight. 

TBVA represents the Timestamp-Based Validation Approach, which serves as an effective 

technique for asynchronous microservice environments to detect possible data staleness. 

TBVA functions by identifying update intention via temporal metadata—specifically, a 

transient timestamp maintained outside the system in a fast-access cache like Redis. When a 

service starts an update, the service records a timestamp in Redis associated with the GUID of 

data. This metadata is short-lived with a time-to-live (TTL), and lives only long enough to 

justify read operations happening in the near future. 

A read action is carried out by the querying service to read a record from its local store and 

metadata from Redis. Then, the timestamp Tₘ of update intent is compared with the last-

modified timestamp Td of the data record. If the timestamp from the metadata is newer than 

the last time the data was written, It demonstrates that the record is potentially stale; otherwise, 

it’s fresh. If no metadata is discovered, we default to assuming freshness to keep things 

responsive. TBVA is ideal for event driven architectures where services emit update events 

and data asynchronously persisted. It allows us to validate freshness in real-time without 

blocking read or couple services too close together. With a simple and efficient mechanism of 

comparing timestamps, TBVA is well-suited to be a scalable and easy-to-integrate solution to 

enhance data correctness in distributed systems. This paper provides an in-depth description of 

the TBVA design, operational logic, implementation trade-offs, and presents a use case along 

with the architectural diagrams that illustrate its capabilities toward use in actual systems. 

2. Related work 

Research efforts have continuously targeted maintaining fresh data in distributed systems and 

microservice architectures since the early years. The shift from monolithic systems to 

microservices creates major challenges in ensuring that all services work using correct and 

contemporary information. Researchers have developed several methods to manage 

consistency constraints, identify dormant data and reduce eventual inconsistency issues 

between services. 

When developers aim to enhance freshness guarantees they turn to the use of quorum-based 

consistency models which can be found in systems like Amazon Dynamo and Apache 

Cassandra. These systems allow users to set W and R replica crossover requirements to adjust 

their consistency levels. The implementation of quorum techniques works effectively, yet it 

requires substantial coordination effort between servers thus it fits better in data storage 

systems, they are unsuitable for microservices that prioritize non-blocking reads and 

decentralized state management. Additionally, such models can degrade performance in 

latency-sensitive applications due to their coordination overhead [1]. 
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Version vector and vector clocks allow distributed systems to track causal updates via logical 

timestamps. Applications using Riak as their key-value store frequently encounter multiple 

conflicting versions called siblings through their eventually consistent operation. Through 

dependency tracking COPS continues the model from COPS to establish causal consistency 

for operations [2]. Both systems become difficult to scale and coordinate when the number of 

dependent services rises. The expansion of Riak vector clocks becomes unwieldy when many 

concurrent write operations occur at the same time but COPS mandates service knowledge and 

operational dependency which disrupts the independent nature of microservices. These systems 

require uniform versioning and coordination protocols even though this assumption does not 

match the heterogeneity of cloud-native environments. 

Few new models rely on timestamps to validate the data freshness without blocking system 

operations. For instance, Parekh et al. GA introduced time-based distributed caching with 

short-living metadata for web systems [3]. But this is at the cache layer, and thus the validation 

happens before the query goes to the core business logic. This presents the risk of false 

freshness, as it could be the case that the cached metadata is recent enough to look valid, but 

the underlying data has grown old because of missed cache updates or considerable re-caching 

delay. 

Cloud-native HTAP systems from the present era place timestamp-based validation logic 

directly inside their database layer. The integrative nature doubles down on accuracy in 

freshness validation, although it demands tight application-system integration at the application 

storage interface. These systems demonstrate restricted portability because they operate poorly 

in environments filled with decentralized microservices [4]. 

Serverless and log-structured systems implement timestamped logs to verify and retrieve state 

information during state recovery operations. The Halfmoon platform uses log-optimal, fault-

tolerant methods that depend on timestamps to achieve consistency throughout its 

asynchronous functions [5]. The asymmetric logging method enhances both execution 

visibility and decreases coordination requirements [6]. These systems excel at implementing 

consistency during event replay and fault recovery operations, but provide no solutions for 

detecting stale data during runtime microservice data reads. 

A study implemented timestamp-indexed validation strategies in time-series databases for 

energy infrastructure by using Apache Druid to deliver fresh-time-aware query capabilities for 

streams of asynchronous data [7]. This methodology produces successful results in controlled 

environments but requires specific structured ingesting operations, which lead to generalization 

problems when working with decentralized microservices. The integration process demands 

collaboration between data schemas and query planners which reduces the individual autonomy 

a service system operates with. 

None of these approaches offer a low-cost way of verifying data freshness at the time of the 

query within the application service itself, without the use of synchronized clocks, vector 

clocks, or cross-service dependency tracking. The Timestamp-Based Validation Approach 

(TBVA) fills this gap in that it makes use of ephemeral and TTL-bound metadata that a service 

stores externally (e.g., in Redis) to let other services determine whether the data they just 

retrieved is stale. As a result, it allows for real-time, decentralized validation without the need 
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to coordinate, and, as such, is very suitable for asynchronous, event-driven architectures. In 

contrast to both cache-level and database embedded freshness mechanisms, TBVA operates at 

the application layer, allowing service autonomy and actionable freshness guarantees. 

3. Methodology 

 Time-Based Validation Approach (TBVA) delivers a flexible and distributed method to detect 

outdated data throughout asynchronous service frameworks. TBVA operates differently from 

traditional approaches by giving services the ability to check the freshness of their records with 

temporal metadata when they query information. The section describes operational workflows 

alongside component duties, which includes metadata management as well as architectural 

prerequisites, and real-life usage descriptions, and formal validation logic elements. 

3.1 Conceptual Model 

All the services in distributed microservice frameworks operate independently with their 

individual databases, using asynchronous protocols for communication. The choices made in 

design lead to better scalability but present challenges for maintaining fresh data between 

different services. The system controls update detection separately from data storage through 

its TBVA design. The metadata layer in Redis operates as a transient system that tracks update 

timestamps for data registration. Services can determine the staleness of data through metadata 

saved without requiring central management. 

3.2 Operational Workflow 

 TBVA functions across two separate operational sequences that include both the write path as 

well as the read path. 

3.2.1 Write Path 

1.  A command service accepts requests for record adds or updates. 

2. A metadata entry comprising the GUID and timestamp Tm, is immediately stored in 

Redis with a Time To Live (TTL). 

3. A message queue receives the entire data payload at the same time as metadata entry 

storage occurs. 

4. A subscribed worker service performs asynchronous updates to the service database 

using timestamp Td. 

3.2.2 Read Path: 

1.  When users make read requests the query service obtains the record from its database 

along with updated timestamp (Td). 

2. The service retrieves metadata information from Redis cache based on record GUID 

fetch from database query. 
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3. The service conducts a timestamp comparison between Tm, which represents Redis 

metadata timestamp, and timestamp Td which represents the modified time of database 

records. 

4. If (Td >= Tm  or CacheMetaData not exist) the record is flagged as fresh; otherwise, it 

is considered stale. 

 
Figure 1: Timestamp-Based Validation Approach (TBVA) Operational Model 

Workflow. 

3.3 System Components 

1. Command Service: Begins the update operation and records the intent to update. 

2. Query Service performs the data query and validation of its freshness. 

3. Cache: Caches short-lived timestamp metadata with TTL, like Redis. 

4. Message Broker: Update events gets transported asynchronously (E.g.., GCP 

Pub/sub, Kafka). 

5. Worker Service :Listens to the broker and update the database. 

6. Service Database: Persists domain data for every service 

3.4 Metadata Management 

Redis allows metadata to survive only briefly after setting its TTL parameter length. The 

system deems metadata inaccessible following its expiration time. During metadata 

unavailability, the system operates with current data records by accepting specified risks of 

temporary out-datedness. TTL parameters need adjustment based on the update speed and 

freshness limits that apply to each service. 
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3.5. Assumptions 

The approach operates under the following assumptions: 

1. All participating services maintain loosely synchronized clocks (e.g., via NTP). 

2. The Redis cache and message broker are highly available and resilient. 

3.6. Illustrative Use Case 

A contemporary e-commerce platform featuring a microservice-based design includes two self-

contained services known as the Inventory Service and Order Service. The Inventory Service 

retains product inventory data, which it updates automatically through warehouse events and 

order transactions that occur in real time. Orders processed by the Order Service need to check 

stock levels before accepting customer transactions. 

During stock update registrations, such as deliveries or adjustments, the Inventory Service 

sends events to the message queue and creates simultaneous Redis operations with validity 

period timestamps. The Worker Service handles the stock data persistence work 

asynchronously after consuming the original message from the Inventory Database. 

The Inventory Service activates the stock update event, which triggers an order for a new 

customer but the updated stock quantity is not yet written to the database. The Order Service 

maintains incorrect stock levels because it obtains database information while the database 

lacks awareness of a pending inventory update, leading to either rejected orders from valid 

stock levels or events where invalid stock levels indicate surplus inventory. 

At stock validation time the Query Component of the Order Service consults Redis through 

TBVA. During validation, the Order Service checks Redis timestamp (Tₘ) against Inventory 

record timestamp (Td) to determine database data freshness. The service indicates data potential 

staleness when it detects that the Redis timestamp exceeds the record timestamp in the 

database. The Order Service can confirm orders conditionally or display a warning after finding 

this result because it could avoid placing incorrect orders. 

TBVA enables distributed services to check and determine data freshness independently of 

strict consistency requirements or coordinated operations. The approach maintains accurate 

service interaction through its data detection system, along with maintaining standard e-

commerce system scalability and responsiveness values. 

3.7. Performance and Scalability 

  The O (1) execution time of Redis lookups maintains low latency delays. 

 No distributed locks appear in the system design which also eliminates blocking of 

reads and global coordination techniques. 

 Transient metadata entries consume minimal memory space because they are small in 

size. 

 TBVA provides efficient high-speed real-time processing capabilities keeping data 

freshness validation both accurate and powerful for massive throughput systems. 

 To applies TBVA is very easily with the existing microservices since it applies 

timestamp logic directly on top of the business data models without requiring service 

modifications. 
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4.System Architecture 

The Timestamp-Based Validation Approach (TBVA) establishes a framework that enables 

large-scale, decentralized data freshness validation among asynchronous microservice 

programs. The system depends on CQRS architecture principles, as well as asynchronous 

communication and temporal metadata to find outdated data instead of demanding strict 

consistency. 

4.1 Architectural Overview 

The system contains multiple independent services that connect through the Command Service, 

Query Service, Worker Service, Cache (Redis), Pub/Sub Queue (RabbitMQ or Kafka) and, 

Database. The independently scalable services combine through asynchronous methods which 

enhance fault tolerance, as well as responsiveness and modular design. 

1. The Command Service accepts data update requests and simultaneously: 

 Writes update intent (GUID + timestamp) into the Redis Cache. 

 Publishes the full payload asynchronously to the Pub/Sub Queue. 

2. The Worker Service consumes messages from the queue and persists updates into the 

Database. 

3. The Query Service handles read operations. It retrieves the latest record from the 

Database and validates its freshness by comparing the database’s last-modified 

timestamp with the timestamp retrieved from the Redis Cache metadata. 

This pattern enables real-time data validation without introducing blocking reads or distributed 

locks. 

 
Figure 2: System Architecture of Timestamp-Based Validation Approach (TBVA) 

4.2 Operation Flow and Interaction Sequence 

The operational workflow is depicted in the sequence diagram below, highlighting the 

interactions during both the add/update and Fetch operations. 

4.2.1 Add/Update Operation 

1. The Caller invokes SaveRecordAsync(GUID, data) on the Command Service. 
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2. Two actions happen in parallel: 

 PushToCacheAsync() stores metadata (GUID, timestamp Tm) in Redis. 

 PushToQueueAsync() sends the data payload to the Pub/Sub Queue. 

3. The Worker Service processes the queue message, transforms, and persists the data 

using SaveRecord() into the Database. 

4.2.2 Read Operation 

1. The Caller initiates a read via GetRecord(GUID) on the Query Service. 

2. The service: 

 Retrieves the record and timestamp from the Database. 

 Fetches the matching metadata from Redis. 

3. A comparison is performed: 

 If cacheTimestamp(Tm) is newer than dbTimestamp (Td), the record is flagged 

as stale. 

 If Cache Metadata does not Exist, than the  record is flagged as fresh. 

 If dbTimestamp (Td), is newer  OR Equal cacheTimestamp(Tm), than the record 

is flagged as fresh. 

 Otherwise, record is flagged as stale. 

The time-stamp verification mechanism grants users both fresh and stale data records with flag 

to identify the data state. 

 
Fig. 3. Sequence Diagram for TBVA-Based Update and Read Operations. 

5. Discussion and Limitations 

TBVA is a timestamp-based validation method that solves the well-known problem of 

ensuring that stale data is not used in an asynchronous microservice architecture, whilst not 
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impacting service autonomy and system performance. By adding a transient metadata tier 

using in-memory database (Redis), TBVA separates the consistency validation from the 

propagation of updates, and services can make local data freshness inferences without 

distributed consensus or strong synchronization mechanisms. 

TBVA shows good scalability due to low integration overhead. Each deployment can be 

deployed independently and does not have a hard dependency on other components or systems 

in the environment. Since read time complexity of in-memory cache like Redis is O(1), the 

system is implemented with low latency in situations with a high number of concurrent users. 

However, there exist some problems or limitations to TBVA. The approach depends on 

loosely synchronized clocks across services; one with significant drift may cause false 

positives in freshness evaluation. This can be averted by maintaining time synchronization on 

all machines using NTP (Network Time Protocol) or similar mechanisms. 

Redis metadata storage is the only weak link. If Redis becomes temporarily unavailable, or 

loses data, services need to believe all database records are fresh which can make it look like 

there's no staleness.TTL (Time-To-Live) setting is also very important. When TTLs are set 

too low, metadata may expire before it can be verified, resulting in the missing of staleness 

detection. On the other hand, using an excessively high TTL could lead to memory overhead 

and maintaining outdated metadata. Performing effective TTL tuning should take into account 

domain-specific update rates as well as the desired balance between freshness precision and 

resource expenditure. 

While TBVA works well on the staleness issue, it cannot resolve data conflicts nor maintain 

causality. In very dynamic systems with fast consecutive updates, other techniques (e.g., 

version vectors) or conflict resolution mechanisms should be considered to boost TBVA. 

In general, TBVA is a lightweight and cost-effective solution for identifying stale data in 

event-driven, distributed systems. In the future, we should explore adaptive TTL management, 

more resilient synchronization strategies, as well as large-scale experiments across globally 

distributed service infrastructures. 

6. Conclusion and Future Work 

The Timestamp-Based Validation Approach (TBVA) is proposed as a simple option to identify 

stale data in fully distributed microservice systems. From a TBVA perspective, clients can 

check the freshness of data independently of the operations on storage, since TBVA decouples 

the process of checking freshness from that of persistence. Read operations perform constant-

time validation using data in Redis cache metadata, together with asynchronous event 

processing that maintains system scalability along with high performance. 

TBVA provides a practical approach in scenarios when full transactional guarantees are 

impossible, but data freshness is still important. Its merits are low latency, lightweight 

architectural intrusion, and the retention of microservices' autonomy. Also, using short-lived 

metadata with expiration policies, the system is both memory efficient and resistant to partial 

failure. However, TBVA has its limits.It has number of limitations such as dependency on 

roughly synchronized clocks, vulnerability to metadata TTL tuning and untamed conflict 

resolution. Future work will investigate the incorporation of logical clock mechanisms in order 
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to remove physical clock dependencies, exploiting adaptive TTL strategies due to system 

dynamics, as well as techniques to improve conflict detection and resolution in the presence 

of highly concurrent operations. In summary, TBVA fills the space between eventual 

consistency and understanding data freshness in real-time, and offers a scalable and deployable 

pattern for contemporary event-driven microservice systems. 
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