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Abstract 

This article studies the Bayesian estimation in newly developed Modified-Weibull (M-W) 

Distribution. The M-W distribution is suitable for bath-shaped and non-decreasing hazards. 

The bayes estimators of shape and scale parameters and reliability characteristics of the 

distribution are obtained under squared error loss function (SELF). Furthermore, the bayes 

estimates are comupted using Tierney Kadane approximation and Markov Chain Monte Carlo 

techniques. The High Posterior Density (HPD) Credible intervals of parameters are also 

obtained. A Monte Carlo simulation study is performed to compare the Maximum likelihood 

estimators and Bayes Estimators. Under certain circumstances, the proposed estimators are 

observed more efficient than already existing estimators. Finally, a real data set is used for 

illustrative purposes. 

Keywords: M-W Distribution, Maximum likelihood estimation, Bayes estimation, SELF, 

MCMC methods. M-H algorithm. 

1. Introduction 

In reliability theory, the classical models were frequently used to model the data because of 

their interpretability and ease of mathematics. But there are variety of hazard rate behaviours 

that are seen in real-world scenarios, such as non-monotonic, bathtub-shaped or unimodal 

failure rates. The introduction of more adaptable and generalized distributions that can 

represent a greater variety of failure mechanisms within a single framework is motivated by 

these limitations. Therefore, the new lifetime distributions are developed to adequately 

represent the complexity of failure and survival data in the real world. For instance, Ghitney et 

al. (2013), Ijaz, Mashwani, & Belhaouari (2020), Muse et al. (2021), Nwezza & Ugwuowo 

(2020), Modi et al. (2020), Kumawat & Nagar (2024) and Mudholkar et al. (1993), Modi 

(2021) proposed some new models to deal with both monotonic and non-monotonic hazards 

effectively and provide results with superior flexibility over existing models.  The Classical 

and Bayesian framework is used in drawing inferences about the parameters of these models 

by researchers. For example, Generalized Exponential Distribution Kundu & Gupta (2008), 

Kundu and Pradhan (2009), Kumarswamy Distribution Chaturvedi (2023), Inverse Weibull 

distribution Kundu & Howlader (2010), Singh et al. (2013), Inverse Rayleigh distribution Dey 

(2012) and Aslam et al. (2021) are studied under Bayesian framework. Similarly, several 

studies have applied Bayesian methods to get improved results over traditional methods. 

In this article, the estimation procedure for newly developed Modified-Weibull (M-W) studied 

by Modi, Kumar, & Singh (2020), Kumawat, Modi & Nagar (2023) is discussed. The M-W 
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distribution is a suitable model for many real-life situations where the data follows non- 

decreasing, bath-shaped, unimodal failure or hazard rate function.  

 

The pdf of M-W distribution is expressed as follows: 

f(x) =
αβ p

σp xp−1e−(
x
σ
)
p

(1 + αβ) {1 −
e−(

x
σ
)
p

(1 + αβ)
}

2, 

 

 

 

(1) 

 

where x > 0, α > 0, β > 0, p > 0 and σ > 0. We note that (α, β) are modified family parameters 

and (p, σ) are shape and scale parameters respectively. 

Moreover, the hazard function (HF) and survival function (SF) are given respectively as, 

h(x) =
(1 + αβ)

p
σp xp−1

1 + αβ − e−(
x
σ
)
p , x > 0,&  α, β, p, σ > 0 
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p  ,    x > 0,&  α, β, p, σ > 0 
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(3) 

 

The maximum likelihood (ML) estimation has been used earlier for estimation purposes in M-

W distribution. Now, we study the bayesian inference for the parameters and reliability 

characteristics of the M-W distribution under SELF following the assumption that the modified 

family parameters are known. The SELF is used here which is symmetric and considers the 

overestimation and under estimation equally serious. The numerical techniques that are used 

to approximate the solutions are Tierney-Kadane (TK) and Markov Chain Monte Carlo 

(MCMC) technique using the Metropolis-Hastings (MH) algorithm.  These techniques have 

severally used in Bastan & Mirmostafaee (2019) and Smith & Roberts (1993). 

The outline of paper is summarized as: Section 2 contains the ML estimation of the parameters 

of M-W distribution in which ML estimates and the corresponding ACIs are derived. Section 

3 considers the Bayes estimation of the parameters with HPD credible intervals. We compare 

the estimators by conducting a Monte Carlo simulation in section 4. Section 5 contains a 

detailed real data analysis with data visualization for illustrative purposes. Finally, section 6 

contains the conclusion based on the study. 

2. Maximum Likelihood Estimation 

Let X1, X2, … , Xn be a set of random observations of size n drawn from M-W distribution. Then, 

the log- likelihood function of the sample is given as, 
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Since α and β are known, the ML equations to obtain the estimates of p and σ are obtained as, 
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It is clear from the equations (5) and (6) that the analytical solution of these equations is not 

possible to obtain. Therefore, we use numerical optimization techniques by Fletcher (1987) to 

obtain ML estimates in R software. Following the invariance property, the SF and HF can also 

be estimated using eq. (2) & (3). 

2.2 Asymptotic Confidence Intervals (ACI) 

The ACIs are derived using the asymptotic normal property of ML estimates. Let θ̂ = (p̂, σ̂) 

be the estimator of θ = (p, σ), then information matrix I(θ̂) is obtained as  

I(θ̂) = −[Iij]θ̂
=

[
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Then, the approximate variance-covariance matrix of estimators defined by [I(θ̂)]
−1

and the 

100(1- δ)% ACIs of parameters are obtained as, 
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3. Bayesian estimation  

In Bayesian estimation method, the parameters of the distribution are assumed to be random 

variables with a prior density function. Since parameters α and β are known, parameters p and 

σ are estimated in this section. The prior information for parameters can be obtained using the 

past knowledge and experiments. When the prior information is not available, we use non-

informative priors for the estimation. Now, we assume that parameters p and σ have 

independent gamma priors with hyperparameters  a1, b1 and a2, b2 respectively. The prior 

densities of parameters p and σ is given by, 

π(p) =
b1

a1

Γa1
pa1−1e−b1p;  p > 0; a1, b1 > 0 

 

(7) 

π(σ) =
b2

a2

Γa2
σa2−1e−b2σ;  σ > 0; a2, b2 > 0 

 

 

(8) 

the joint prior pdf of p and σ is, 

π (p, σ) ∝  pa1−1σa2−1 e−(b1p+b2σ);  p > 0, σ > 0 
 

(9) 

Next, the joint posterior distribution of p and σ given x is given by: 

π(p, σ |x)  =
L(x| p, σ)π( p, σ)

∫ ∫ L(x| p, σ)π (p, σ)
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where,  

C−1 = ∫ ∫ pn+a1−1σ−np+a2−1e
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Therefore, Bayes estimator of any function of  p and σ say, φ (p, σ) under SELF is the posterior 

expectation of φ (p, σ) and is given by, 

E(φ(p,σ) |x) = ∫ ∫ φ( p, σ)
∞

0

∞

0
π(p, σ |x)dp dσ 

 

(11) 

It seems that Eq. (13) is not in explicit form and its solution is not possible to obtain analytically. 

Therefore, the TK method by Tierney and Kadane (1986) and MH algorithm is used to 

approximate Bayes estimates. 
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3.1 TK Approximation  

According to TK method, the approximate bayes estimator of any function φ (p, σ) under SELF 

is given by,  

φ̂ = E(φ( p, σ)|x) =  
∫ ∫ enδ∗(p,σ)φ( p, σ)

∞

0

∞

0
dpdσ

∫ ∫ enδ(p,σ)φ( p, σ)
∞

0

∞

0
dpdσ

 
 

 

(12) 

where, 

 δ(p, σ)  =
lnπ(p, σ) + ln L

n
 

and δ∗(p, σ) = δ(p, σ) +
1

n
 lnφ(p,σ ).  

The above expression is approximated by the T-K method and the posterior mean is 

computed as follows: 
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Then, ( p̂δ, σ̂δ) are obtained by solving equations simultaneously: 
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and |Σ| is the determinant of inverse of negative Hessian of δ (p, σ) at ( p̂δ, σ̂δ) obtained as, 
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|Σ|=

(

 
 

−
𝜕2δ(p, σ)

𝜕𝑝2
−

𝜕2δ(p, σ)

𝜕𝑝𝜕𝜎

−
𝜕2δ(p, σ)

𝜕𝜎𝜕𝑝
−

𝜕2δ(p, σ)

𝜕𝜎2
)

 
 

−1

 

Now, to obtain the bayes estimate of p and σ, we use φ(p, σ ) = p and φ(p, σ ) = σ 

respectively to get 

δ𝑝
∗ (p, σ) = δ (p, σ) +

1

n
 ln p 

δ𝜎
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1

n
 ln σ 

Then, ( p̂δ∗ , σ̂δ∗) are computed by solving equations simultaneously:  
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Thus, the bayes estimates parameter p and σ under SELF are given by, 

p̂TK= √
|Σp

∗ |

|Σ|
en[δp

∗ ( p̂δ∗,σ̂δ∗) − enδp(p̂,σ̂)], 

σ̂TK= √
|Σσ

∗ |

|Σ|
en[δσ

∗ ( p̂δ∗,σ̂δ∗) − enδσ(p̂,σ̂)] respectively. 

The Bayes estimator of survival and hazard function under SELF, we consider φ (p, σ) = S(t) 

and h(t) and the estimators are: 

Ŝ(t)TK= √
|Σ∗

S(t)|

|Σ|
enδ∗

S(t)( p̂δ∗,σ̂δ∗) − enδ∗
S(t)(p̂,σ̂) and 

ĥ(t)TK= √
|Σ∗

h(t)|

|Σ|
enδ∗

h(t)( p̂δ∗,σ̂δ∗) − enδ∗
h(t)(p̂,σ̂)respectively. 

3.2 MCMC Method 

The MCMC method is the important technique to get samples from posterior distributions. MH 

algorithm Metropolis et al. (1953) & Hastings (1970) is one of the Markov chain simulation 
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methods that are used to generate samples from the joint posterior distribution whenever the 

posterior distribution cannot be reduced to standard form. It is also discussed in Robert and 

Casella (2004). The full conditionals for p and σ can be given as, 

π(p| σ, x)  ∝ pn+a1−1σ−npe−(b1p)e−∑(
xi
σ

)
p

∏
  xi

p−1

{1 −
e−(

xi
σ

)
p

(1 + αβ)
}
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n

i=1
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π(σ | p, x)  ∝ σ−np+a2−1e−(b2σ)e− ∑(
xi
σ

)
p

∏{1 −
e−(

xi
σ

)
p

(1 + αβ)
}

−2
n

i=1

 

 

 

 

(15) 

The conditional densities given in equations (14) and (15) are not from known distributions 

and the MH algorithm is used to generate posterior samples from the given full conditional 

densities. The steps employed to generate posterior samples are as follows: 

(i). Start with an initial guess, say (p(0), σ(0)) 

(ii). Set k = 1 

(iii). Generate pc
(k)

, from the proposal normal density N(p(k-1),1). 

(iv). Generate u from Uniform (0,1). 

(v). Now, compute r(p(k))| p(k-1)) = min{
πp(pc

(k)
|data )

πp(p(k−1)|data )
, 1} 

(vi). If u ≤ r, set p(k) = pc
(k)

 with acceptance probability r otherwise, set p(𝑘) = p(k−1). 

(vii). Generate σ(k)using similar steps with proposal normal density N(σ(k-1),1). 

(viii). Set k = k +1. 

(ix). Repeat step (iii) to (viii) for N times to get the MCMC samples of p and σ as 

 p(𝑘) and σ(𝑘)respectively for k = 1,2, …, N. 

Next, we discarded first N0 = 20% of the N samples as burn-in-period and obtained 

independent samples from the stationary distribution of the Markov chain. To minimize the 

autocorrelation, we may alternatively use the thinning interval, which involves discarding all 

samples except for the j-th generated ones.  

Now, the bayes estimator of φ(p,σ) is defined as 

 φ̂MC(p, σ) =
1

N − N0
∑ φ̂(p(k), σ(k))

N

k=N0+1

 

Therefore, taking φ(p,σ) = p and σ, Bayes estimates of p and σ  under SELF are given by 

respectively, 

p̂MC =
1

N − N0
∑ p(k)

N

k=N0+1

, 
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σ̂MC =
1

N − N0
∑ σ(k)

N

k=N0+1

, 

The bayes estimates of SF and HF are obtained as, respectively 

Ŝ(t)MC =
1

N − N0
∑

αβe
−(

x

σ(k)
)
p(k)

αβ + 1 − e
−(

x

σ(k)
)
p(k)

N

k=N0+1

;           t > 0 

ĥ(t)MC =
1

N − N0
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(1 + αβ)
p(k)

σ(k)p
(k) x

p(k)−1

αβ + 1 − e
−(

x

σ(k)
)
p(k)

N

k=N0+1

;        t > 0 

3.3 HPD Credible Interval Estimation 

To get the interval estimate, the HPD credible intervals of parameters are constructed using the 

algorithm proposed by Chen and Shao (1999). Let p(1) < p(2) < ⋯ < p(N−N0)1 be the ordered 

values of the generated MCMC samples of p in the previous subsection. The 100(1-ξ)% HPD 

credible interval for p is, 

(p(k), p(k+[(1−ξ)(N−N0)])), 

where k is so chosen that 

p(k+[(1−ξ)(N−N0)]) − p(k) = min
1≤i≤(N−N0)

(p(i+[(1−ξ)(N−N0)]) − p(i)) ; k = 1,2, … , (N − N0) 

here, [x] is the largest integer less than or equal to x. Similarly, the HPD credible intervals for 

parameter σ can also be obtained. 

4. Simulation Study  

A simulation study is performed to evaluate the effectiveness and performance of proposed 

Bayes estimators and ML estimates. 

The random sample is generated from the M-W distribution using the inverse cdf 

transformation as,  

xi, =σ (ln(1 −
ui

1 +αβ) − ln(1 − ui))

1

p
 

where ui~U(0, 1). 

The 1,000 random samples are generated using the above approach for four sample sizes 25, 

50, 75 and 100. We fixed the value of parameters (α, β) at (0.5,1) (0.5,2) and (2,2). To compare 

the various estimates three sets of true values of parameters are taken as (p, σ) =(0.6, 1.0), (p, 

σ) = (1.5, 1.5) and (p, σ) = (2.0, 2.0). The ML estimates are obtained for each sample size. For 

Bayesian computation method, the values of hyperparameters are taken as a1 = b1 = a2  = b2 = 

0.0001 using non-informative prior (P1). In case of informative prior (P2), the hyper 

parameters values are taken as a1 = 3, b1 = 5, a2  = 1, b2  = 1 when (p, σ) = (0.6, 1.0), a1 = 3, b1 
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= 2, a2  = 3, b2  = 2 when (p, σ) = (1.5, 1.5) and a1 = 2, b1 = 1, a2  = 2, b2  = 1 when (p, σ) = (2, 

2).  These values are so chosen that the prior mean is exactly equal to the true values of the 

corresponding parameter.  The bayes estimates are obtained using discussed approximation 

techniques. The posterior samples for the parameters p and σ of size 10,000 are generated and 

2,000 observations are discarded as burn-in period in MCMC method. The mean squared error 

(MSE) of estimators is calculated for comparison of different estimates. Further, average length 

(AL) of ACI and HPD intervals and coverage probability (CP) are calculated as interval 

estimates.  

The MSEs of ML and Bayes estimates of p and σ are given in Tables 1,3 and 6. Table 2,4 and 

6 contain the CP and AL of the ACI and HPD credible intervals of parameters p and σ for 

different values of α and β. It is observed from these results that: 

1. The MSE of both estimates tends to decrease as sample size increases. The Bayes 

estimates have the lesser MSE than ML estimates when they include prior information 

about the parameters. Also, bayes estimates evalutaed for P2 give better results than 

bayes estimates for P1. 

2. The bayes estimates obtained using MH algorithm with informative priors have the 

lesser MSE than ML estimates and bayes estimates using TK method and hence provide 

best results among all estimates. 

3. The AL of ACI/HPD credible intervals narrows down as sample size increase in all 

cases. Also, credible intervals of parameter p have shorter AL than ACIs and thus 

provide better results whereas they are better only in case of informative prior for 

parameter σ. 

4. For ML estimation, the CP attain the prescribed confidence levels satisfactorily and for 

Bayesian estimation, it attains the nominal level almost in all cases. 

Therefore, we recommand to use bayes estimates to get point and interval estimates for 

estimation purposes as they are good in terms of MSE. 

Table 1. MSE of estimators when α = 0.5 and β = 1.0 

(p, σ) n 

�̂� �̂� 

MLE 
TK MH 

MLE 
TK MH 

P1 P2 P1 P2 P1 P2 P1 P2 

0.6,1 

25 0.0118 0.0119 0.0094 0.0101 0.0076 0.2105 0.3894 0.1852 0.3597 0.1668 

50 0.0048 0.0047 0.0045 0.0042 0.0035 0.1139 0.1134 0.1068 0.1323 0.0985 

75 0.0029 0.0028 0.0027 0.0025 0.0024 0.0726 0.0864 0.0716 0.0813 0.0602 

100 0.0021 0.0020 0.0019 0.0020 0.0018 0.0547 0.0632 0.0542 0.0586 0.0481 

1.5,1.5 

25 0.0737 0.0622 0.0527 0.0478 0.0417 0.0729 0.0694 0.0494 0.0845 0.0649 

50 0.0301 0.0276 0.0256 0.0249 0.0241 0.0366 0.0363 0.0346 0.0390 0.0348 

75 0.0183 0.0171 0.0163 0.0157 0.0142 0.0259 0.0214 0.0250 0.0252 0.0234 

100 0.0131 0.0124 0.0120 0.0130 0.0117 0.0192 0.0195 0.0189 0.0188 0.0178 

2.0,2.0 

25 0.1311 0.1104 0.0989 0.1240 0.0810 0.0815 0.0771 0.0673 0.0815 0.0635 

50 0.0536 0.0539 0.0531 0.0516 0.0472 0.0399 0.0377 0.0349 0.0383 0.0347 

75 0.0326 0.0304 0.0295 0.0318 0.0274 0.0261 0.0253 0.0227 0.0203 0.0201 

100 0.0233 0.0223 0.0217 0.0231 0.0215 0.0193 0.0189 0.0186 0.0186 0.0183 
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Table 2. AL and CP of interval estimates when α = 0.5 and β=1.0 

(p, σ) n Method 

�̂� �̂� 

AL CP AL CP 

0.6,1 

25 

MLE 0.3618 0.945 1.7729 0.881 

P1 0.3483 0.948 1.8017 0.938 

P2 0.3325 0.962 1.7266 0.942 

50 

MLE 0.2501 0.942 1.2216 0.910 

P1 0.2379 0.973 1.2377 0.964 

P2 0.2319 0.938 1.2124 0.957 

75 

MLE 0.2015 0.959 1.0002 0.917 

P1 0.1918 0.933 1.0166 0.905 

P2 0.1864 0.948 0.9784 0.938 

100 

MLE 0.1733 0.949 0.8689 0.932 

P1 0.1610 0.933 0.8581 0.944 

P2 0.1607 0.944 0.8426 0.956 

1.5,1.5 

25 

MLE 0.9146 0.939 1.0149 0.927 

P1 0.8009 0.936 1.0488 0.953 

P2 0.7506 0.943 1.0143 0.943 

50 

MLE 0.6245 0.953 0.7198 0.933 

P1 0.5992 0.938 0.7291 0.958 

P2 0.5834 0.945 0.7191 0.963 

75 

MLE 0.5030 0.944 0.5890 0.933 

P1 0.4784 0.928 0.5928 0.962 

P2 0.4777 0.954 0.5852 0.916 

100 

MLE 0.4326 0.946 0.5125 0.936 

P1 0.4136 0.930 0.5065 0.932 

P2 0.4115 0.956 0.5022 0.945 

2.0,2.0 

25 

MLE 1.2190 0.955 0.9886 0.898 

P1 1.1983 0.948 1.1074 0.952 

P2 1.1269 0.950 1.0662 0.968 

50 

MLE 0.8302 0.948 0.7193 0.936 

P1 0.8058 0.948 0.7530 0.934 

P2 0.7949 0.954 0.7444 0.960 

75 

MLE 0.6714 0.954 0.5895 0.935 

P1 0.6383 0.930 0.6058 0.954 

P2 0.6279 0.948 0.6058 0.967 

100 

MLE 0.5781 0.947 0.5114 0.947 

P1 0.5559 0.952 0.5059 0.942 

P2 0.5519 0.956 0.5023 0.924 
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Table 3. MSE of estimators when α = 0.5 and β =2.0 

(p, σ) n 

�̂� �̂� 

MLE 
TK MH 

MLE 
TK MH 

P1 P2 P1 P2 P1 P2 P1 P2 

0.6,1 

25 0.0103 0.0099 0.0080 0.0091 0.0072 0.3217 0.6704 0.1869 0.8631 0.1849 

50 0.0042 0.0043 0.0036 0.0040 0.0029 0.1647 0.2186 0.1236 0.2472 0.1147 

75 0.0029 0.0027 0.0026 0.0026 0.0022 0.1006 0.1239 0.0973 0.1365 0.0792 

100 0.0021 0.0019 0.0018 0.0016 0.0014 0.0797 0.0878 0.0660 0.0769 0.0467 

1.5,1.5 

25 0.0641 0.0612 0.0561 0.0627 0.0518 0.1175 0.1300 0.0927 0.1240 0.0755 

50 0.0264 0.0269 0.0218 0.0246 0.0215 0.0542 0.0536 0.0499 0.0527 0.0408 

75 0.0181 0.0167 0.0158 0.0134 0.0124 0.0336 0.0359 0.0330 0.0365 0.0243 

100 0.0134 0.0121 0.0116 0.0096 0.0071 0.0238 0.0267 0.0231 0.0237 0.0222 

2.0,2.0 

25 0.1169 0.1085 0.0868 0.0821 0.0799 0.1153 0.1225 0.0967 0.1200 0.0869 

50 0.0519 0.0479 0.0442 0.0394 0.0364 0.0567 0.0548 0.0527 0.0521 0.0502 

75 0.0284 0.0297 0.0259 0.0285 0.0245 0.0368 0.0353 0.0317 0.0385 0.0278 

100 0.0234 0.0202 0.0197 0.0201 0.0185 0.0282 0.0291 0.0280 0.0288 0.0246 

 

 

 

 

Table 4. AL and CP of interval estimates when α = 0.5 and β=2.0 

(p, σ) n Method 

�̂� �̂� 

AL CP AL CP 

0.6,1 

25 

MLE 0.3635 0.941 2.1273 0.846 

P1 0.3549 0.937 3.2874 0.952 

P2 0.3178 0.952 1.8587 0.954 

50 

MLE 0.2464 0.967 1.4910 0.885 

P1 0.2406 0.948 1.7115 0.939 

P2 0.2303 0.980 1.4759 0.960 

75 

MLE 0.1999 0.942 1.1921 0.893 

P1 0.1940 0.926 1.3055 0.956 

P2 0.1894 0.960 1.1606 0.946 

100 

MLE 0.1703 0.950 1.0608 0.909 

P1 0.1665 0.960 1.0339 0.953 

P2 0.1336 0.950 0.8278 0.946 

1.5,1.5 
25 

MLE 0.9064 0.938 1.1996 0.875 

P1 0.8763 0.936 1.1965 0.940 

P2 0.8325 0.942 1.1800 0.956 

50 MLE 0.6140 0.941 0.8596 0.906 
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P1 0.5958 0.936 0.8597 0.940 

P2 0.5814 0.932 0.8590 0.928 

75 

MLE 0.4963 0.944 0.6967 0.930 

P1 0.4779 0.944 0.6968 0.938 

P2 0.4684 0.940 0.6923 0.928 

100 

MLE 0.4267 0.957 0.6174 0.942 

P1 0.4182 0.936 0.6162 0.948 

P2 0.4116 0.948 0.6127 0.946 

2.0,2.0 

25 

MLE 1.2043 0.949 1.1914 0.889 

P1 1.1316 0.960 1.1962 0.947 

P2 1.1275 0.966 1.1872 0.944 

50 

MLE 0.8290 0.950 0.8480 0.923 

P1 0.7981 0.935 0.8152 0.940 

P2 0.7720 0.953 0.8001 0.933 

75 

MLE 0.6607 0.949 0.7222 0.935 

P1 0.6342 0.921 0.7133 0.940 

P2 0.6221 0.953 0.7003 0.973 

100 
MLE 0.5683 0.952 0.6098 0.945 

P1 0.5497 0.927 0.6079 0.947 
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Table 6. AL and CP of interval estimates when α = 2.0 and β=2.0 

(p, σ) n Method 

�̂� �̂� 

AL CP AL CP 

0.6,1 

25 

MLE 0.3892 0.955 1.3653 0.8900 

P1 0.3679 0.948 1.4059 0.8960 

P2 0.3337 0.920 1.1727 0.9160 

50 

MLE 0.2634 0.962 0.9864 0.9310 

P1 0.2549 0.944 0.9852 0.9040 

P2 0.2503 0.946 0.9326 0.9430 

75 

MLE 0.2129 0.948 0.8035 0.9320 

P1 0.2045 0.934 0.7876 0.8940 

P2 0.1972 0.946 0.7717 0.9390 

100 

MLE 0.1828 0.949 0.7063 0.9340 

P1 0.1767 0.948 0.7011 0.9080 

P2 0.1758 0.960 0.6745 0.9640 

1.5,1.5 

25 

MLE 0.9571 0.953 0.8274 0.938 

P1 0.8905 0.958 0.8321 0.960 

P2 0.8820 0.938 0.8263 0.926 

50 

MLE 0.6623 0.965 0.5829 0.924 

P1 0.6308 0.946 0.5821 0.934 

P2 0.6187 0.936 0.5765 0.950 

75 
MLE 0.5328 0.942 0.4822 0.929 

P1 0.5054 0.912 0.4759 0.912 

 

 

 

 

 

Table 5. MSE of estimators when α = 2.0 and β = 2.0 

(p, σ) n 

�̂� �̂�  

MLE 
TK MH 

MLE 
TK MH  

P1 P2 P1 P2 P1 P2 P1 P2 

0.6,1 

25 0.0128 0.0110 0.0106 0.0112 0.0076 0.1455 0.1794 0.1247 0.1507 0.0828 

50 0.0053 0.0049 0.0048 0.0045 0.0041 0.0722 0.0800 0.0679 0.0790 0.0659 

75 0.0032 0.0030 0.0029 0.0030 0.0029 0.0462 0.0496 0.0448 0.0492 0.0411 

100 0.0023 0.0022 0.0021 0.0022 0.0021 0.0344 0.0363 0.0337 0.0321 0.0298 

1.5,1.5 

25 0.0799 0.0685 0.0575 0.0688 0.0552 0.0494 0.0510 0.0446 0.0516 0.0418 

50 0.0332 0.0307 0.0284 0.0273 0.0267 0.0251 0.0254 0.0238 0.0237 0.0212 

75 0.0201 0.0190 0.0180 0.0209 0.0179 0.0162 0.0163 0.0156 0.0159 0.0154 

100 0.0145 0.0139 0.0134 0.0141 0.0130 0.0121 0.0122 0.0118 0.0120 0.0114 

2.0,2.0 

25 0.1278 0.1217 0.0977 0.1173 0.0963 0.0441 0.0505 0.0430 0.0546 0.0428 

50 0.0570 0.0546 0.0495 0.0591 0.0471 0.0236 0.0253 0.0234 0.0236 0.0216 

75 0.0325 0.0337 0.0299 0.0228 0.0221 0.0147 0.0162 0.0146 0.0135 0.0134 

100 0.0269 0.0247 0.0241 0.0231 0.0107 0.0119 0.0122 0.0118 0.0113 0.0107 
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P2 0.5028 0.938 0.4671 0.912 

100 

MLE 0.4576 0.953 0.4169 0.939 

P1 0.4366 0.936 0.4049 0.930 

P2 0.4299 0.940 0.4044 0.939 

2.0,2.0 

25 

MLE 1.2794 0.954 0.8748 0.908 

P1 1.2425 0.956 0.8696 0.948 

P2 1.0380 0.958 0.8643 0.942 

50 

MLE 0.8769 0.943 0.5970 0.936 

P1 0.8379 0.932 0.5896 0.956 

P2 0.7800 0.945 0.5801 0.955 

75 

MLE 0.7062 0.949 0.4845 0.943 

P1 0.6760 0.953 0.4811 0.946 

P2 0.6623 0.945 0.4810 0.936 

100 

MLE 0.6127 0.947 0.4178 0.931 

P1 0.5678 0.944 0.4049 0.950 

P2 0.5505 0.946 0.4043 0.953 

5. Real Data Analysis 

In this section, we demonstrate the estimation methods discussed earlier using a dataset. The 

observations are the survival times (in days) of guinea pigs that were given different doses of 

tubercle bacilli. These records are taken from Bjerkedal (1960). 

For the particular experimental regimen (6.6), a total of 72 survival time observations were 

recorded, as listed below: 

12, 15, 22, 24, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48, 52, 53, 54, 54, 55, 56, 57, 58, 58, 59, 60, 

60, 60, 60, 61, 62, 63, 65, 65, 67, 68, 70, 70, 72, 73, 75, 76, 76, 81, 83, 84, 85, 87, 91, 95, 96, 

98, 99, 109, 110, 121, 127, 129, 131, 143, 146, 146, 175, 175, 211, 233, 258, 258, 263, 297, 

341, 341, 376. 

First, we provide the descriptive statistics for this data in Table 7 to summarize its key statistical 

properties. It suggests that the data is right-skewed,  have a long tail toward higher survival 

times and greater variability. The behaviour of data has been examined using several graphical 

plots such as box plot, TTT plot and Kaplan Meier (KM) Survival plot.  

Next, we fit several statistical distributions to the dataset to determine the most appropriate 

model for the data. Specifically, we consider the M-W distribution, weibull distribution (WD), 

gamma distribution (GD), the exponentiated-exponential distribution (EED) and the Modified-

Exponential (M-E) distribution. The negative Log-Likelihood (-lnL), information criterians 

namely AIC, BIC, CAIC and HQIC are used to assess the fit. The goodness of fit statistics, 

Kolmogorov-Smirnov (K-S) Statistic and p-value are evaluated to compare the empirical 

distribution of the data with the fitted models. The best model for the data is selected based on 

the lowest values of -lnL, AIC, BIC, CAIC, HQIC and K-S statistic, along with the highest p-

value. The MLEs and K-S statistic are reported in Table 8 and Information criterion are given 

in Table 9. The results show that M-W distribution is the best model for this data. 
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In Table 10, all estimates with respective 95% ACI/HPD intervals of the parameters are 

reported. The Bayes estimates of parameters are computed with non-informative priors using 

both approximation  techniques. In M-H algoritham, the Markov chain is generated taking M 

= 1,00,000 and first M0 = 20,000 values are discarded as burn-in-period and every 10th value 

in generated samples is taken as iid observation. 

5.1 Data Visualization 

In this subsection, we draw box plot, scaled TTT plot and KM survival plot of the data. The 

Box plot shows the positively skewed nature of the data,  TTT  plot suggests a unimodal hazard 

function and survival plot shows the survival probabilities, see figure (1). These figures suggest 

to model the data using the M-W distribution. The fitting plot of the M-W distribution to the 

empirical distribution of the data is given in figure (2) and it suggests that proposed model fits 

data very well.  

For Bayesian estimation using MCMC method, the convergence for the stationary distributions 

of markov chains is verified using graphical diagnostic tools like trace plot, auto correlation 

function (ACF) plot and kernel density plots. Figure (3) shows the trace, ACF and kernel 

density plots for the parameters obtained from the MCMC sampling process. The trace plots 

of the chains indicate a random scatter about the mean value (represented by solid line) and 

reflects good convergence of the MCMC process. The ACF plots display the chains for both p 

and σ show very low autocorrelations and generated samples are nearly independent and 

representative of the true posterior distribution. The kernal density plots show that the 

conditional marginal distributions of the parameters are appear to be symmetrical and unimodal 

i.e. mean can be taken as the best estimate for the parameters.  

Table 7. Descriptive statistics 

Min Q1 Medium Mean Q3 Max Skewness Kurtosis Sd 

12.00    54.75    70.00    99.82   112.75   376.00  1.79624 2.61444 81.11795 

 

Table 8. MLEs, Neg log-likelihood and Goodness-of-fit test Statistics 

Distribution MLEs -ln L K-S p-value 

M-W 

(α=0.1, β=1.0) 
2.199594, 237.828567 390.4254 0.1009 0.4553 

WD 1.3925, 110.3530 397.1479 0.14551 0.09479 

GD 2.0812, 0.0209 394.2476 0.1381 0.128 

EED 2.4842, 0.0170 393.1106 0.13244 0.1599 

M-E 3.5642, 6.1615, 0.010 403.4448 0.21213 0.0031 
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Table 9. Information Criterion 

Distribution AIC BIC CAIC HQIC 

M-W 784.8509 789.4042 785.0248 786.6635 

WD 798.2958 802.8491 798.4697 800.1085 

GD 792.4952 797.0485 792.6691 794.3079 

EED 790.2212 794.7745 790.3951 792.0339 

M-E 812.8897 819.7197 813.2426 815.6087 

 

Table 10. Estimates of parameters, survival and hazard functions with 95% 

ACI/HPD credible intervals (in bracket) for survival times (in days) of guinea pigs 

Method �̂� �̂� S(t) h(t) 

MLE 
2.1996 

(1.8591, 2.5401) 

237.8286 

(190.8541, 284.8030) 
0.5642 0.0142 

Bayesian 

(MCMC) 

2.168671 

(1.8451, 2.4966) 

244.645244 

(198.4372, 297.0932) 
0.5702 0.0138 

Bayesian 

(TK) 
2.168176 237.8286 0.5705 0.0116 

 

 

(a)                                                   (b)                                                 (c) 

Figure 1. (a) Box plot, (b) TTT plot and (c) KM Survival Plot for the data 
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Figure 2. Fitting plot of M-W distribution to empirical data 

 

   

   

Figure 3. Trace plot, ACF plot and histogram with kernel density plots of the parameters 
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6. Concluding Remarks 

This article studies the Bayesian estimation of the parameters and reliability functions of M-W 

distribution when parameters α and β are known. The ML estimates and ACIs are obtained of 

unknown parameters. For Bayes estimates, the prior belief is considered by the independent 

gamma informative and non-informative priors. Bayes estimates are computed under SELF 

using TK method and MCMC methods. The M-H algorithm is used to generate MCMC 

samples of parameters and to compute credible intervals.  The performance of both estimators 

is compared by a monte carlo simulation study. The study shows that bayes estimates using 

informative priors obtained from MH algorithm have minimum MSE than ML and the Bayes 

estimates using TK method under both informative and non-informative priors. The HPD 

credible interval estimates also provided better results than ACI under informative priors. Next, 

we analysed a real set of observations to implement the discussed estimation methods that 

provided satisfactory results under Bayesian approach. Thus, we recommend to use Bayes 

estimation with some prior information or a suitable non-informative prior for more efficient 

results. 
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