

Article

Man. J. Sci. Ind. Res. Volume 2 (1) (2025), 25205 ISSN: 3049-2815

On Bayesian Estimation for Modified-Weibull Distribution

Harshita Kumawat¹, Pankaj Nagar²

^{1,2}Department of Statistics, University of Rajasthan, Jaipur *Corresponding Author: pnagar121@gmail.com

Abstract

This article studies the Bayesian estimation in newly developed Modified-Weibull (M-W) Distribution. The M-W distribution is suitable for bath-shaped and non-decreasing hazards. The bayes estimators of shape and scale parameters and reliability characteristics of the distribution are obtained under squared error loss function (SELF). Furthermore, the bayes estimates are comupted using Tierney Kadane approximation and Markov Chain Monte Carlo techniques. The High Posterior Density (HPD) Credible intervals of parameters are also obtained. A Monte Carlo simulation study is performed to compare the Maximum likelihood estimators and Bayes Estimators. Under certain circumstances, the proposed estimators are observed more efficient than already existing estimators. Finally, a real data set is used for illustrative purposes.

Keywords: M-W Distribution, Maximum likelihood estimation, Bayes estimation, SELF, MCMC methods. M-H algorithm.

1. Introduction

In reliability theory, the classical models were frequently used to model the data because of their interpretability and ease of mathematics. But there are variety of hazard rate behaviours that are seen in real-world scenarios, such as non-monotonic, bathtub-shaped or unimodal failure rates. The introduction of more adaptable and generalized distributions that can represent a greater variety of failure mechanisms within a single framework is motivated by these limitations. Therefore, the new lifetime distributions are developed to adequately represent the complexity of failure and survival data in the real world. For instance, Ghitney et al. (2013), Ijaz, Mashwani, & Belhaouari (2020), Muse et al. (2021), Nwezza & Ugwuowo (2020), Modi et al. (2020), Kumawat & Nagar (2024) and Mudholkar et al. (1993), Modi (2021) proposed some new models to deal with both monotonic and non-monotonic hazards effectively and provide results with superior flexibility over existing models. The Classical and Bayesian framework is used in drawing inferences about the parameters of these models by researchers. For example, Generalized Exponential Distribution Kundu & Gupta (2008), Kundu and Pradhan (2009), Kumarswamy Distribution Chaturvedi (2023), Inverse Weibull distribution Kundu & Howlader (2010), Singh et al. (2013), Inverse Rayleigh distribution Dey (2012) and Aslam et al. (2021) are studied under Bayesian framework. Similarly, several studies have applied Bayesian methods to get improved results over traditional methods. In this article, the estimation procedure for newly developed Modified-Weibull (M-W) studied

In this article, the estimation procedure for newly developed Modified-Weibull (M-W) studied by Modi, Kumar, & Singh (2020), Kumawat, Modi & Nagar (2023) is discussed. The M-W

distribution is a suitable model for many real-life situations where the data follows nondecreasing, bath-shaped, unimodal failure or hazard rate function.

The pdf of M-W distribution is expressed as follows:

$$f(\mathbf{x}) = \frac{\alpha^{\beta} \frac{p}{\sigma^{p}} \mathbf{x}^{p-1} e^{-\left(\frac{\mathbf{x}}{\sigma}\right)^{p}}}{(1+\alpha^{\beta}) \left\{1 - \frac{e^{-\left(\frac{\mathbf{x}}{\sigma}\right)^{p}}}{(1+\alpha^{\beta})}\right\}^{2}},$$
(1)

where x > 0, $\alpha > 0$, $\beta > 0$, p > 0 and $\sigma > 0$. We note that (α, β) are modified family parameters and (p, σ) are shape and scale parameters respectively.

Moreover, the hazard function (HF) and survival function (SF) are given respectively as,

$$h(x) = \frac{\left(1 + \alpha^{\beta}\right)\frac{p}{\sigma^{p}}x^{p-1}}{1 + \alpha^{\beta} - e^{-\left(\frac{x}{\sigma}\right)^{p}}}, x > 0, \& \alpha, \beta, p, \sigma > 0$$
(2)

$$S(x) = \frac{\alpha^{\beta} e^{-\left(\frac{x}{\sigma}\right)^{p}}}{1 + \alpha^{\beta} - e^{-\left(\frac{x}{\sigma}\right)^{p}}}, \quad x > 0, \& \ \alpha, \beta, p, \sigma > 0$$
(3)

The maximum likelihood (ML) estimation has been used earlier for estimation purposes in M-W distribution. Now, we study the bayesian inference for the parameters and reliability characteristics of the M-W distribution under SELF following the assumption that the modified family parameters are known. The SELF is used here which is symmetric and considers the overestimation and under estimation equally serious. The numerical techniques that are used to approximate the solutions are Tierney-Kadane (TK) and Markov Chain Monte Carlo (MCMC) technique using the Metropolis-Hastings (MH) algorithm. These techniques have severally used in Bastan & Mirmostafaee (2019) and Smith & Roberts (1993).

The outline of paper is summarized as: Section 2 contains the ML estimation of the parameters of M-W distribution in which ML estimates and the corresponding ACIs are derived. Section 3 considers the Bayes estimation of the parameters with HPD credible intervals. We compare the estimators by conducting a Monte Carlo simulation in section 4. Section 5 contains a detailed real data analysis with data visualization for illustrative purposes. Finally, section 6 contains the conclusion based on the study.

2. Maximum Likelihood Estimation

Let $X_1, X_2, ..., X_n$ be a set of random observations of size n drawn from M-W distribution. Then, the log-likelihood function of the sample is given as,

ln L(x; α , β , p, σ)

$$= n \ln p - n p \ln \sigma + n \beta \ln \alpha - n \ln (1 + \alpha^{\beta}) + (p - 1) \sum_{i=1}^{n} \ln x_{i}$$
$$- \sum_{i=1}^{n} \left(\frac{x_{i}}{\sigma}\right)^{p} - 2 \sum_{i=1}^{n} \ln \left(1 - \frac{e^{-\left(\frac{x_{i}}{\sigma}\right)^{p}}}{(1 + \alpha^{\beta})}\right)$$
(4)

Since α and β are known, the ML equations to obtain the estimates of p and σ are obtained as,

$$\frac{\partial \ln L}{\partial p} = \frac{n}{p} - n \ln \sigma
+ \sum_{i=1}^{n} \ln x_{i} - \sum_{i=1}^{n} \left(\frac{x_{i}}{\sigma} \right)^{p} \ln \left(\frac{x_{i}}{\sigma} \right)
- 2 \sum_{i=1}^{n} \left(\left(\frac{x_{i}}{\sigma} \right)^{p} \ln \left(\frac{x_{i}}{\sigma} \right) \frac{e^{-\left(\frac{x_{i}}{\sigma} \right)^{p}}}{\left(1 + \alpha^{\beta} - e^{-\left(\frac{x_{i}}{\sigma} \right)^{p}} \right)} \right) = 0$$

$$\frac{\partial \ln L}{\partial \sigma} = -\frac{np}{\sigma} + \frac{p}{\sigma} \sum_{i=1}^{n} \left(\frac{x_{i}}{\sigma} \right)^{p} + 2 \frac{p}{\sigma} \sum_{i=1}^{n} \left(\left(\frac{x_{i}}{\sigma} \right)^{p} \frac{e^{-\left(\frac{x_{i}}{\sigma} \right)^{p}}}{\left(1 + \alpha^{\beta} - e^{-\left(\frac{x_{i}}{\sigma} \right)^{p}} \right)} \right)$$

$$= 0$$
(5)

It is clear from the equations (5) and (6) that the analytical solution of these equations is not possible to obtain. Therefore, we use numerical optimization techniques by Fletcher (1987) to obtain ML estimates in R software. Following the invariance property, the SF and HF can also be estimated using eq. (2) & (3).

2.2 Asymptotic Confidence Intervals (ACI)

The ACIs are derived using the asymptotic normal property of ML estimates. Let $\hat{\theta} = (\hat{p}, \hat{\sigma})$ be the estimator of $\theta = (p, \sigma)$, then information matrix $I(\hat{\theta})$ is obtained as

$$I(\hat{\theta}) = -[I_{ij}]_{\hat{\theta}} = \begin{bmatrix} -\frac{\partial^2 \ln L}{\partial p^2} & -\frac{\partial^2 \ln L}{\partial p \partial \sigma} \\ -\frac{\partial^2 \ln L}{\partial \sigma \partial p} & -\frac{\partial^2 \ln L}{\partial \sigma^2} \end{bmatrix}_{(\hat{p},\hat{\sigma})}$$

Then, the approximate variance-covariance matrix of estimators defined by $[I(\hat{\theta})]^{-1}$ and the 100(1- δ)% ACIs of parameters are obtained as,

$$\left(\hat{p} - Z_{\delta}\sqrt{Var(\hat{p})}, \hat{p} + Z_{\delta}\sqrt{Var(\hat{p})}\right)$$
 and $\left(\hat{\sigma} - Z_{\delta}\sqrt{Var(\hat{\sigma})}, \hat{\sigma} + Z_{\delta}\sqrt{Var(\hat{\sigma})}\right)$ respectively.

3. Bayesian estimation

In Bayesian estimation method, the parameters of the distribution are assumed to be random variables with a prior density function. Since parameters α and β are known, parameters p and σ are estimated in this section. The prior information for parameters can be obtained using the past knowledge and experiments. When the prior information is not available, we use non-informative priors for the estimation. Now, we assume that parameters p and σ have independent gamma priors with hyperparameters a_1 , b_1 and a_2 , b_2 respectively. The prior densities of parameters p and σ is given by,

$$\pi(p) = \frac{b_1^{a_1}}{\Gamma a_1} p^{a_1 - 1} e^{-b_1 p}; \ p > 0; \ a_1, b_1 > 0$$

$$\pi(\sigma) = \frac{b_2^{a_2}}{\Gamma a_2} \sigma^{a_2 - 1} e^{-b_2 \sigma}; \ \sigma > 0; \ a_2, b_2 > 0$$
(8)

the joint prior pdf of p and σ is,

$$\pi(\mathbf{p},\sigma) \propto \mathbf{p}^{a_1 - 1} \sigma^{a_2 - 1} e^{-(\mathbf{b}_1 \mathbf{p} + \mathbf{b}_2 \sigma)}; \ \mathbf{p} > 0, \sigma > 0$$
(9)

Next, the joint posterior distribution of p and σ given x is given by:

$$\pi(p,\sigma | x) = \frac{L(x | p, \sigma)\pi(p, \sigma)}{\int_{0}^{\infty} \int_{0}^{\infty} L(x | p, \sigma)\pi(p, \sigma) dp d\sigma}$$

$$\pi(p,\sigma | x) = C^{-1}p^{n+a_{1}-1}\sigma^{-np+a_{2}-1} e^{-(b_{1}p+b_{2}\sigma)}e^{-\sum \left(\frac{x_{i}}{\sigma}\right)^{p}} \prod_{i=1}^{n} \frac{x_{i}^{p-1}}{\left\{1 - \frac{e^{-\left(\frac{x_{i}}{\sigma}\right)^{p}}}{(1 + \alpha^{\beta})}\right\}^{2}}$$
(10)

where,

$$\mathsf{C}^{-1} = \int_0^\infty \int_0^\infty p^{n+a_1-1} \sigma^{-np+a_2-1} e^{-\sum \left(\frac{x_i}{\sigma}\right)^p} \prod_{i=1}^n \frac{x_i^{p-1}}{\left\{1 - \frac{e^{-\left(\frac{x_i}{\sigma}\right)^p}}{(1+\alpha^\beta)}\right\}^2} \, dp d\sigma$$

Therefore, Bayes estimator of any function of p and σ say, φ (p, σ) under SELF is the posterior expectation of φ (p, σ) and is given by,

$$E(\varphi(p,\sigma) | x) = \int_0^\infty \int_0^\infty \varphi(p,\sigma) \pi(p,\sigma | x) dp d\sigma$$
(11)

It seems that Eq. (13) is not in explicit form and its solution is not possible to obtain analytically. Therefore, the TK method by Tierney and Kadane (1986) and MH algorithm is used to approximate Bayes estimates.

3.1 TK Approximation

According to TK method, the approximate bayes estimator of any function ϕ (p, σ) under SELF is given by,

$$\widehat{\varphi} = E(\varphi(p,\sigma)|x) = \frac{\int_0^\infty \int_0^\infty e^{n\delta^*(p,\sigma)}\varphi(p,\sigma) \,dpd\sigma}{\int_0^\infty \int_0^\infty e^{n\delta(p,\sigma)}\varphi(p,\sigma) \,dpd\sigma}$$
(12)

where,

$$\delta(\mathbf{p}, \sigma) = \frac{\ln \pi(\mathbf{p}, \sigma) + \ln L}{n}$$

and $\delta^*(p,\sigma) = \delta(p,\sigma) + \frac{1}{n} \ln \varphi(p,\sigma)$.

The above expression is approximated by the T-K method and the posterior mean is computed as follows:

$$\widehat{\varphi}(\mathbf{p},\sigma) = \mathbf{E}(\varphi(\mathbf{p},\sigma)|\mathbf{x}) = \sqrt{\frac{|\Sigma^*|}{|\Sigma|}} e^{\mathbf{n}\delta^*(\widehat{\mathbf{p}}_{\delta^*},\widehat{\sigma}_{\delta^*})} - e^{\mathbf{n}\delta(\widehat{\mathbf{p}}_{\delta},\widehat{\sigma}_{\delta})}$$
(13)

where,

$$\begin{split} n\delta(p,\sigma) &= (n+a_1-1)lnp + (-np+a_2-1)ln\sigma + n\beta ln\alpha - nln(1+\alpha^{\beta}) - (b_1p+b_2\sigma) \\ &+ (p-1)\sum_{i=1}^n lnx_i - \sum_{i=1}^n \left(\frac{x_i}{\sigma}\right)^p - 2\sum_{i=1}^n ln\left(1 - \frac{e^{-\left(\frac{x_i}{\sigma}\right)^p}}{(1+\alpha^{\beta})}\right) \end{split}$$

Then, ($\hat{p}_{\delta}, \widehat{\sigma}_{\delta})$ are obtained by solving equations simultaneously:

$$\frac{\partial \delta(\mathbf{p}, \sigma)}{\partial p} = \frac{\mathbf{n} + \mathbf{a}_1 - 1}{\mathbf{p}} - \mathbf{n} \ln \sigma - \mathbf{b}_1 \mathbf{p}$$
$$+ \sum_{i=1}^n \ln \mathbf{x}_i - \sum_{i=1}^n \left(\frac{\mathbf{x}_i}{\sigma}\right)^p \ln\left(\frac{\mathbf{x}_i}{\sigma}\right) - 2\sum_{i=1}^n \left(\left(\frac{\mathbf{x}_i}{\sigma}\right)^p \ln\left(\frac{\mathbf{x}_i}{\sigma}\right) \frac{\mathbf{e}^{-\left(\frac{\mathbf{x}_i}{\sigma}\right)^p}}{\left(1 + \alpha^\beta - \mathbf{e}^{-\left(\frac{\mathbf{x}_i}{\sigma}\right)^p}\right)}\right)$$
$$= 0$$

$$\frac{\partial \delta(\mathbf{p},\sigma)}{\partial \sigma} = -\frac{np}{\sigma} - b_2 \sigma + \frac{p}{\sigma} \sum_{i=1}^n \left(\frac{x_i}{\sigma}\right)^p + 2\frac{p}{\sigma} \sum_{i=1}^n \left(\left(\frac{x_i}{\sigma}\right)^p \frac{e^{-\left(\frac{x_i}{\sigma}\right)^p}}{\left(1 + \alpha^\beta - e^{-\left(\frac{x_i}{\sigma}\right)^p}\right)}\right) = 0$$

and $|\Sigma|$ is the determinant of inverse of negative Hessian of δ (p, σ) at ($\hat{p}_{\delta}, \hat{\sigma}_{\delta}$) obtained as,

$$|\Sigma| = \left(-\frac{\partial^2 \delta(\mathbf{p}, \sigma)}{\partial p^2} - \frac{\partial^2 \delta(\mathbf{p}, \sigma)}{\partial p \partial \sigma} - \frac{\partial^2 \delta(\mathbf{p}, \sigma)}{\partial \sigma \partial p} - \frac{\partial^2 \delta(\mathbf{p}, \sigma)}{\partial \sigma^2} \right)^{-1}$$

Now, to obtain the bayes estimate of p and σ , we use $\varphi(p, \sigma) = p$ and $\varphi(p, \sigma) = \sigma$ respectively to get

$$\delta_p^*(\mathbf{p}, \sigma) = \delta(\mathbf{p}, \sigma) + \frac{1}{n} \ln \mathbf{p}$$
$$\delta_\sigma^*(\mathbf{p}, \sigma) = \delta(\mathbf{p}, \sigma) + \frac{1}{n} \ln \sigma$$

Then, ($\hat{p}_{\delta^*}, \widehat{\sigma}_{\delta^*})$ are computed by solving equations simultaneously:

$$\frac{\partial \delta_{p}^{*}(p,\sigma)}{\partial p} = \frac{\partial \delta(p,\sigma)}{\partial p} + \frac{1}{p} = 0$$
$$\frac{\partial \delta_{p}^{*}(p,\sigma)}{\partial \sigma} = \frac{\partial \delta(p,\sigma)}{\partial \sigma} + \frac{1}{\sigma} = 0$$

and Σ_{ϕ}^{*} is the determinant of inverse of negative Hessian of $\delta_{\phi}^{*}(p,\sigma)$ at $(\hat{p}_{\delta^{*}}, \hat{\sigma}_{\delta^{*}})$. $|\Sigma_{\phi}^{*}|$ is obtained as

$$|\Sigma_{p}^{*}| = \begin{pmatrix} -\frac{\partial^{2}\delta_{\phi}^{*}(p,\sigma)}{\partial p^{2}} & -\frac{\partial^{2}\delta_{\phi}^{*}(p,\sigma)}{\partial p \partial \sigma} \\ -\frac{\partial^{2}\delta_{\phi}^{*}(p,\sigma)}{\partial \sigma \partial p} & -\frac{\partial^{2}\delta_{\phi}^{*}(p,\sigma)}{\partial \sigma^{2}} \end{pmatrix}^{-1}$$

Thus, the bayes estimates parameter p and σ under SELF are given by,

$$\begin{split} & \hat{p}_{TK} = \sqrt{\frac{|\Sigma_{p}^{*}|}{|\Sigma|}} e^{n[\delta_{p}^{*}(\hat{p}_{\delta^{*}}, \hat{\sigma}_{\delta^{*}})} - e^{n\delta_{p}(\hat{p}, \hat{\sigma})]}, \\ & \hat{\sigma}_{TK} = \sqrt{\frac{|\Sigma_{\sigma}^{*}|}{|\Sigma|}} e^{n[\delta_{\sigma}^{*}(\hat{p}_{\delta^{*}}, \hat{\sigma}_{\delta^{*}})} - e^{n\delta_{\sigma}(\hat{p}, \hat{\sigma})]} \text{ respectively.} \end{split}$$

The Bayes estimator of survival and hazard function under SELF, we consider $\varphi(p, \sigma) = S(t)$ and h(t) and the estimators are:

$$\hat{S}(t)_{TK} = \sqrt{\frac{|\Sigma^*_{S(t)}|}{|\Sigma|}} e^{n\delta^*_{S(t)}(\hat{p}_{\delta^*},\hat{\sigma}_{\delta^*})} - e^{n\delta^*_{S(t)}(\hat{p},\hat{\sigma})} \text{ and}$$
$$\hat{h}(t)_{TK} = \sqrt{\frac{|\Sigma^*_{h(t)}|}{|\Sigma|}} e^{n\delta^*_{h(t)}(\hat{p}_{\delta^*},\hat{\sigma}_{\delta^*})} - e^{n\delta^*_{h(t)}(\hat{p},\hat{\sigma})} \text{ respectively.}$$

3.2 MCMC Method

The MCMC method is the important technique to get samples from posterior distributions. MH algorithm Metropolis et al. (1953) & Hastings (1970) is one of the Markov chain simulation

methods that are used to generate samples from the joint posterior distribution whenever the posterior distribution cannot be reduced to standard form. It is also discussed in Robert and Casella (2004). The full conditionals for p and σ can be given as,

$$\begin{aligned} \pi(p \mid \sigma, x) &\propto p^{n+a_{1}-1} \sigma^{-np} e^{-(b_{1}p)} e^{-\sum \left(\frac{x_{i}}{\sigma}\right)^{p}} \prod_{i=1}^{n} \frac{x_{i}^{p-1}}{\left\{1 - \frac{e^{-\left(\frac{x_{i}}{\sigma}\right)^{p}}}{\left(1 + \alpha^{\beta}\right)}\right\}^{2}} \\ \pi(\sigma \mid p, x) &\propto \sigma^{-np+a_{2}-1} e^{-(b_{2}\sigma)} e^{-\sum \left(\frac{x_{i}}{\sigma}\right)^{p}} \prod_{i=1}^{n} \left\{1 - \frac{e^{-\left(\frac{x_{i}}{\sigma}\right)^{p}}}{\left(1 + \alpha^{\beta}\right)}\right\}^{-2} \end{aligned}$$
(14)

The conditional densities given in equations (14) and (15) are not from known distributions and the MH algorithm is used to generate posterior samples from the given full conditional densities. The steps employed to generate posterior samples are as follows:

- (i). Start with an initial guess, say $(p^{(0)}, \sigma^{(0)})$
- (ii). Set k = 1
- (iii). Generate $p_c^{(k)}$, from the proposal normal density $N(p^{(k-1)}, 1)$.
- (iv). Generate u from Uniform (0,1).

(v). Now, compute $r(p^{(k)})|p^{(k-1)} = \min\left\{\frac{\pi_p(p_c^{(k)}|\text{data})}{\pi_p(p^{(k-1)}|\text{data})}, 1\right\}$

- (vi). If $u \le r$, set $p(k) = p_c^{(k)}$ with acceptance probability r otherwise, set $p(k) = p^{(k-1)}$.
- (vii). Generate $\sigma^{(k)}$ using similar steps with proposal normal density N($\sigma^{(k-1)}$,1).
- (viii). Set k = k + 1.
- (ix). Repeat step (iii) to (viii) for N times to get the MCMC samples of p and σ as $p^{(k)}$ and $\sigma^{(k)}$ respectively for k = 1, 2, ..., N.

Next, we discarded first $N_0 = 20\%$ of the N samples as burn-in-period and obtained independent samples from the stationary distribution of the Markov chain. To minimize the autocorrelation, we may alternatively use the thinning interval, which involves discarding all samples except for the j-th generated ones.

Now, the bayes estimator of $\varphi(p, \sigma)$ is defined as

$$\widehat{\varphi}_{MC}(p,\sigma) = \frac{1}{N - N_0} \sum_{k=N_0+1}^{N} \widehat{\varphi}(p^{(k)}, \sigma^{(k)})$$

Therefore, taking $\varphi(p, \sigma) = p$ and σ , Bayes estimates of p and σ under SELF are given by respectively,

$$\hat{p}_{MC} = \frac{1}{N - N_0} \sum_{k=N_0+1}^{N} p^{(k)},$$

$$\widehat{\sigma}_{\text{MC}} = \frac{1}{N - N_0} \sum_{k=N_0+1}^{N} \sigma^{(k)},$$

The bayes estimates of SF and HF are obtained as, respectively

$$\hat{S}(t)_{MC} = \frac{1}{N - N_0} \sum_{k=N_0+1}^{N} \frac{\alpha^{\beta} e^{-\left(\frac{x}{\sigma^{(k)}}\right)^{p^{(k)}}}}{\alpha^{\beta} + 1 - e^{-\left(\frac{x}{\sigma^{(k)}}\right)^{p^{(k)}}}}; \qquad t > 0$$

$$\hat{h}(t)_{MC} = \frac{1}{N - N_0} \sum_{k=N_0+1}^{N} \frac{\left(1 + \alpha^{\beta}\right) \frac{p^{(k)}}{\sigma^{(k)}} x^{p^{(k)}-1}}{\alpha^{\beta} + 1 - e^{-\left(\frac{x}{\sigma^{(k)}}\right)^{p^{(k)}}}}; \quad t > 0$$

3.3 HPD Credible Interval Estimation

To get the interval estimate, the HPD credible intervals of parameters are constructed using the algorithm proposed by Chen and Shao (1999). Let $p_{(1)} < p_{(2)} < \cdots < p_{(N-N_0)1}$ be the ordered values of the generated MCMC samples of p in the previous subsection. The 100(1- ξ)% HPD credible interval for p is,

$$(p_{(k)}, p_{(k+[(1-\xi)(N-N_0)])}),$$

where k is so chosen that

$$p_{(k+[(1-\xi)(N-N_0)])} - p_{(k)} = \min_{1 \le i \le (N-N_0)} (p_{(i+[(1-\xi)(N-N_0)])} - p_{(i)}); k = 1, 2, ..., (N-N_0)$$

here, [x] is the largest integer less than or equal to x. Similarly, the HPD credible intervals for parameter σ can also be obtained.

4. Simulation Study

A simulation study is performed to evaluate the effectiveness and performance of proposed Bayes estimators and ML estimates.

The random sample is generated from the M-W distribution using the inverse cdf transformation as,

$$x_{i} = \sigma \left(\ln \left(1 - \frac{u_{i}}{1 + \alpha^{\beta}} \right) - \ln (1 - u_{i}) \right)^{\frac{1}{p}}$$

where $u_{i} \sim U(0, 1)$.

The 1,000 random samples are generated using the above approach for four sample sizes 25, 50, 75 and 100. We fixed the value of parameters (α , β) at (0.5,1) (0.5,2) and (2,2). To compare the various estimates three sets of true values of parameters are taken as (p, σ) =(0.6, 1.0), (p, σ) = (1.5, 1.5) and (p, σ) = (2.0, 2.0). The ML estimates are obtained for each sample size. For Bayesian computation method, the values of hyperparameters are taken as $a_1 = b_1 = a_2 = b_2 = 0.0001$ using non-informative prior (P1). In case of informative prior (P2), the hyper parameters values are taken as $a_1 = 3$, $b_1 = 5$, $a_2 = 1$, $b_2 = 1$ when (p, σ) = (0.6, 1.0), $a_1 = 3$, $b_1 = 3$, $b_2 = 1$ when (p, σ) = (0.6, 1.0), $a_1 = 3$, $b_2 = 3$.

= 2, $a_2 = 3$, $b_2 = 2$ when $(p, \sigma) = (1.5, 1.5)$ and $a_1 = 2$, $b_1 = 1$, $a_2 = 2$, $b_2 = 1$ when $(p, \sigma) = (2, 2)$. These values are so chosen that the prior mean is exactly equal to the true values of the corresponding parameter. The bayes estimates are obtained using discussed approximation techniques. The posterior samples for the parameters p and σ of size 10,000 are generated and 2,000 observations are discarded as burn-in period in MCMC method. The mean squared error (MSE) of estimators is calculated for comparison of different estimates. Further, average length (AL) of ACI and HPD intervals and coverage probability (CP) are calculated as interval estimates.

The MSEs of ML and Bayes estimates of p and σ are given in Tables 1,3 and 6. Table 2,4 and 6 contain the CP and AL of the ACI and HPD credible intervals of parameters p and σ for different values of α and β . It is observed from these results that:

- 1. The MSE of both estimates tends to decrease as sample size increases. The Bayes estimates have the lesser MSE than ML estimates when they include prior information about the parameters. Also, bayes estimates evaluated for P2 give better results than bayes estimates for P1.
- 2. The bayes estimates obtained using MH algorithm with informative priors have the lesser MSE than ML estimates and bayes estimates using TK method and hence provide best results among all estimates.
- 3. The AL of ACI/HPD credible intervals narrows down as sample size increase in all cases. Also, credible intervals of parameter p have shorter AL than ACIs and thus provide better results whereas they are better only in case of informative prior for parameter σ .
- 4. For ML estimation, the CP attain the prescribed confidence levels satisfactorily and for Bayesian estimation, it attains the nominal level almost in all cases.

Therefore, we recommand to use bayes estimates to get point and interval estimates for estimation purposes as they are good in terms of MSE.

		$\widehat{\mathbf{p}}$					σ				
(p, σ)	n	MLE	Т	K	Μ	MH		Т	K	MH	
			P1	P2	P1	P2	NILL	P1	P2	P1	P2
	25	0.0118	0.0119	0.0094	0.0101	0.0076	0.2105	0.3894	0.1852	0.3597	0.1668
0.6.1	50	0.0048	0.0047	0.0045	0.0042	0.0035	0.1139	0.1134	0.1068	0.1323	0.0985
0.0,1	75	0.0029	0.0028	0.0027	0.0025	0.0024	0.0726	0.0864	0.0716	0.0813	0.0602
	100	0.0021	0.0020	0.0019	0.0020	0.0018	0.0547	0.0632	0.0542	0.0586	0.0481
	25	0.0737	0.0622	0.0527	0.0478	0.0417	0.0729	0.0694	0.0494	0.0845	0.0649
1515	50	0.0301	0.0276	0.0256	0.0249	0.0241	0.0366	0.0363	0.0346	0.0390	0.0348
1.5,1.5	75	0.0183	0.0171	0.0163	0.0157	0.0142	0.0259	0.0214	0.0250	0.0252	0.0234
	100	0.0131	0.0124	0.0120	0.0130	0.0117	0.0192	0.0195	0.0189	0.0188	0.0178
	25	0.1311	0.1104	0.0989	0.1240	0.0810	0.0815	0.0771	0.0673	0.0815	0.0635
2.0,2.0	50	0.0536	0.0539	0.0531	0.0516	0.0472	0.0399	0.0377	0.0349	0.0383	0.0347
	75	0.0326	0.0304	0.0295	0.0318	0.0274	0.0261	0.0253	0.0227	0.0203	0.0201
	100	0.0233	0.0223	0.0217	0.0231	0.0215	0.0193	0.0189	0.0186	0.0186	0.0183

Table 1. MSE of estimators when $\alpha = 0.5$ and $\beta = 1.0$

		p		â	<u>.</u> Ĵ
n	Method	AL	СР	AL	СР
	MLE	0.3618	0.945	1.7729	0.881
25	P1	0.3483	0.948	1.8017	0.938
	P2	0.3325	0.962	1.7266	0.942
	MLE	0.2501	0.942	1.2216	0.910
50	P1	0.2379	0.973	1.2377	0.964
	P2	0.2319	0.938	1.2124	0.957
	MLE	0.2015	0.959	1.0002	0.917
75	P1	0.1918	0.933	1.0166	0.905
	P2	0.1864	0.948	0.9784	0.938
	MLE	0.1733	0.949	0.8689	0.932
100	P1	0.1610	0.933	0.8581	0.944
	P2	0.1607	0.944	0.8426	0.956
	MLE	0.9146	0.939	1.0149	0.927
25	P1	0.8009	0.936	1.0488	0.953
	P2	0.7506	0.943	1.0143	0.943
	MLE	0.6245	0.953	0.7198	0.933
50	P1	0.5992	0.938	0.7291	0.958
	P2	0.5834	0.945	0.7191	0.963
	MLE	0.5030	0.944	0.5890	0.933
75	P1	0.4784	0.928	0.5928	0.962
	P2	0.4777	0.954	0.5852	0.916
	MLE	0.4326	0.946	0.5125	0.936
100	P1	0.4136	0.930	0.5065	0.932
	P2	0.4115	0.956	0.5022	0.945
	MLE	1.2190	0.955	0.9886	0.898
25	P1	1.1983	0.948	1.1074	0.952
	P2	1.1269	0.950	1.0662	0.968
	MLE	0.8302	0.948	0.7193	0.936
50	P1	0.8058	0.948	0.7530	0.934
	P2	0.7949	0.954	0.7444	0.960
	MLE	0.6714	0.954	0.5895	0.935

. . Table 2. AI

(**p**, σ)

0.6,1

1.5,1.5

2.0,2.0

75

100

P1

P2

MLE

P1

P2

0.6383

0.6279

0.5781

0.5559

0.5519

0.930

0.948

0.947

0.952

0.956

0.6058

0.6058

0.5114

0.5059

0.5023

0.954

0.967

0.947

0.942

0.924

			p ̂				σ				
(p, σ)	n	MLE	Т	ТК		MH		ТК		MH	
			P1	P2	P1	P2		P1	P2	P1	P2
	25	0.0103	0.0099	0.0080	0.0091	0.0072	0.3217	0.6704	0.1869	0.8631	0.1849
061	50	0.0042	0.0043	0.0036	0.0040	0.0029	0.1647	0.2186	0.1236	0.2472	0.1147
0.0,1	75	0.0029	0.0027	0.0026	0.0026	0.0022	0.1006	0.1239	0.0973	0.1365	0.0792
	100	0.0021	0.0019	0.0018	0.0016	0.0014	0.0797	0.0878	0.0660	0.0769	0.0467
	25	0.0641	0.0612	0.0561	0.0627	0.0518	0.1175	0.1300	0.0927	0.1240	0.0755
1515	50	0.0264	0.0269	0.0218	0.0246	0.0215	0.0542	0.0536	0.0499	0.0527	0.0408
1.5,1.5	75	0.0181	0.0167	0.0158	0.0134	0.0124	0.0336	0.0359	0.0330	0.0365	0.0243
	100	0.0134	0.0121	0.0116	0.0096	0.0071	0.0238	0.0267	0.0231	0.0237	0.0222
2.0,2.0	25	0.1169	0.1085	0.0868	0.0821	0.0799	0.1153	0.1225	0.0967	0.1200	0.0869
	50	0.0519	0.0479	0.0442	0.0394	0.0364	0.0567	0.0548	0.0527	0.0521	0.0502
	75	0.0284	0.0297	0.0259	0.0285	0.0245	0.0368	0.0353	0.0317	0.0385	0.0278
	100	0.0234	0.0202	0.0197	0.0201	0.0185	0.0282	0.0291	0.0280	0.0288	0.0246

Table 3. MSE of estimators when α = 0.5 and β =2.0

Table 4. AL and CP of interval estimates when $\alpha = 0.5$ and $\beta = 2.0$

			p		<u> </u>		
(p, σ)	n	Method	AL	СР	AL	СР	
		MLE	0.3635	0.941	2.1273	0.846	
	25	P1	0.3549	0.937	3.2874	0.952	
		P2	0.3178	0.952	1.8587	0.954	
		MLE	0.2464	0.967	1.4910	0.885	
	50	P1	0.2406	0.948	1.7115	0.939	
0.6.1		P2	0.2303	0.980	1.4759	0.960	
0.0,1	75	MLE	0.1999	0.942	1.1921	0.893	
		P1	0.1940	0.926	1.3055	0.956	
		P2	0.1894	0.960	1.1606	0.946	
		MLE	0.1703	0.950	1.0608	0.909	
	100	P1	0.1665	0.960	1.0339	0.953	
		P2	0.1336	0.950	0.8278	0.946	
1515		MLE	0.9064	0.938	1.1996	0.875	
	25	P1	0.8763	0.936	1.1965	0.940	
1.3,1.3		P2	0.8325	0.942	1.1800	0.956	
	50	MLE	0.6140	0.941	0.8596	0.906	

		P1	0.5958	0.936	0.8597	0.940
		P2	0.5814	0.932	0.8590	0.928
		MLE	0.4963	0.944	0.6967	0.930
	75	P1	0.4779	0.944	0.6968	0.938
		P2	0.4684	0.940	0.6923	0.928
		MLE	0.4267	0.957	0.6174	0.942
	100	P1	0.4182	0.936	0.6162	0.948
		P2	0.4116	0.948	0.6127	0.946
		MLE	1.2043	0.949	1.1914	0.889
	25	P1	1.1316	0.960	1.1962	0.947
		P2	1.1275	0.966	1.1872	0.944
		MLE	0.8290	0.950	0.8480	0.923
	50	P1	0.7981	0.935	0.8152	0.940
2.0,2.0		P2	0.7720	0.953	0.8001	0.933
		MLE	0.6607	0.949	0.7222	0.935
	75	P1	0.6342	0.921	0.7133	0.940
		P2	0.6221	0.953	0.7003	0.973
	100	MLE	0.5683	0.952	0.6098	0.945
	100	P1	0.5497	0.927	0.6079	0.947

				p					σ		
(p, σ)	n	MLE	Т	ТК		MH		ТК		MH	
			P1	P2	P1	P2		P1	P2	P1	P2
	25	0.0128	0.0110	0.0106	0.0112	0.0076	0.1455	0.1794	0.1247	0.1507	0.0828
061	50	0.0053	0.0049	0.0048	0.0045	0.0041	0.0722	0.0800	0.0679	0.0790	0.0659
0.0,1	75	0.0032	0.0030	0.0029	0.0030	0.0029	0.0462	0.0496	0.0448	0.0492	0.0411
	100	0.0023	0.0022	0.0021	0.0022	0.0021	0.0344	0.0363	0.0337	0.0321	0.0298
	25	0.0799	0.0685	0.0575	0.0688	0.0552	0.0494	0.0510	0.0446	0.0516	0.0418
1515	50	0.0332	0.0307	0.0284	0.0273	0.0267	0.0251	0.0254	0.0238	0.0237	0.0212
1.5,1.5	75	0.0201	0.0190	0.0180	0.0209	0.0179	0.0162	0.0163	0.0156	0.0159	0.0154
	100	0.0145	0.0139	0.0134	0.0141	0.0130	0.0121	0.0122	0.0118	0.0120	0.0114
	25	0.1278	0.1217	0.0977	0.1173	0.0963	0.0441	0.0505	0.0430	0.0546	0.0428
2020	50	0.0570	0.0546	0.0495	0.0591	0.0471	0.0236	0.0253	0.0234	0.0236	0.0216
2.0,2.0	75	0.0325	0.0337	0.0299	0.0228	0.0221	0.0147	0.0162	0.0146	0.0135	0.0134
	100	0.0269	0.0247	0.0241	0.0231	0.0107	0.0119	0.0122	0.0118	0.0113	0.0107

Table 5. MSE of estimators when $\alpha = 2.0$ and $\beta = 2.0$

Table 6. AL and CP of interval estimates when $\alpha = 2.0$ and $\beta = 2.0$

			p		σ		
(p, σ)	n	Method	AL	СР	AL	СР	
		MLE	0.3892	0.955	1.3653	0.8900	
	25	P1	0.3679	0.948	1.4059	0.8960	
		P2	0.3337	0.920	1.1727	0.9160	
		MLE	0.2634	0.962	0.9864	0.9310	
	50	P1	0.2549	0.944	0.9852	0.9040	
0.6.1		P2	0.2503	0.946	0.9326	0.9430	
0.0,1		MLE	0.2129	0.948	0.8035	0.9320	
	75	P1	0.2045	0.934	0.7876	0.8940	
		P2	0.1972	0.946	0.7717	0.9390	
		MLE	0.1828	0.949	0.7063	0.9340	
	100	P1	0.1767	0.948	0.7011	0.9080	
		P2	0.1758	0.960	0.6745	0.9640	
		MLE	0.9571	0.953	0.8274	0.938	
	25	P1	0.8905	0.958	0.8321	0.960	
		P2	0.8820	0.938	0.8263	0.926	
1.5,1.5		MLE	0.6623	0.965	0.5829	0.924	
	50	P1	0.6308	0.946	0.5821	0.934	
		P2	0.6187	0.936	0.5765	0.950	
	75	MLE	0.5328	0.942	0.4822	0.929	
	15	P1	0.5054	0.912	0.4759	0.912	

		P2	0.5028	0.938	0.4671	0.912
		MLE	0.4576	0.953	0.4169	0.939
	100	P1	0.4366	0.936	0.4049	0.930
		P2	0.4299	0.940	0.4044	0.939
		MLE	1.2794	0.954	0.8748	0.908
	25	P1	1.2425	0.956	0.8696	0.948
		P2	1.0380	0.958	0.8643	0.942
		MLE	0.8769	0.943	0.5970	0.936
	50	P1	0.8379	0.932	0.5896	0.956
2020		P2	0.7800	0.945	0.5801	0.955
2.0,2.0		MLE	0.7062	0.949	0.4845	0.943
	75	P1	0.6760	0.953	0.4811	0.946
		P2	0.6623	0.945	0.4810	0.936
		MLE	0.6127	0.947	0.4178	0.931
	100	P1	0.5678	0.944	0.4049	0.950
		P2	0.5505	0.946	0.4043	0.953

5. Real Data Analysis

In this section, we demonstrate the estimation methods discussed earlier using a dataset. The observations are the survival times (in days) of guinea pigs that were given different doses of tubercle bacilli. These records are taken from Bjerkedal (1960).

For the particular experimental regimen (6.6), a total of 72 survival time observations were recorded, as listed below:

12, 15, 22, 24, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48, 52, 53, 54, 54, 55, 56, 57, 58, 58, 59, 60, 60, 60, 61, 62, 63, 65, 67, 68, 70, 70, 72, 73, 75, 76, 76, 81, 83, 84, 85, 87, 91, 95, 96, 98, 99, 109, 110, 121, 127, 129, 131, 143, 146, 146, 175, 175, 211, 233, 258, 258, 263, 297, 341, 341, 376.

First, we provide the descriptive statistics for this data in Table 7 to summarize its key statistical properties. It suggests that the data is right-skewed, have a long tail toward higher survival times and greater variability. The behaviour of data has been examined using several graphical plots such as box plot, TTT plot and Kaplan Meier (KM) Survival plot.

Next, we fit several statistical distributions to the dataset to determine the most appropriate model for the data. Specifically, we consider the M-W distribution, weibull distribution (WD), gamma distribution (GD), the exponentiated-exponential distribution (EED) and the Modified-Exponential (M-E) distribution. The negative Log-Likelihood (-lnL), information criterians namely AIC, BIC, CAIC and HQIC are used to assess the fit. The goodness of fit statistics, Kolmogorov-Smirnov (K-S) Statistic and p-value are evaluated to compare the empirical distribution of the data with the fitted models. The best model for the data is selected based on the lowest values of -lnL, AIC, BIC, CAIC, HQIC and K-S statistic, along with the highest p-value. The MLEs and K-S statistic are reported in Table 8 and Information criterion are given in Table 9. The results show that M-W distribution is the best model for this data.

In Table 10, all estimates with respective 95% ACI/HPD intervals of the parameters are reported. The Bayes estimates of parameters are computed with non-informative priors using both approximation techniques. In M-H algoritham, the Markov chain is generated taking M = 1,00,000 and first $M_0 = 20,000$ values are discarded as burn-in-period and every 10th value in generated samples is taken as iid observation.

5.1 Data Visualization

In this subsection, we draw box plot, scaled TTT plot and KM survival plot of the data. The Box plot shows the positively skewed nature of the data, TTT plot suggests a unimodal hazard function and survival plot shows the survival probabilities, see figure (1). These figures suggest to model the data using the M-W distribution. The fitting plot of the M-W distribution to the empirical distribution of the data is given in figure (2) and it suggests that proposed model fits data very well.

For Bayesian estimation using MCMC method, the convergence for the stationary distributions of markov chains is verified using graphical diagnostic tools like trace plot, auto correlation function (ACF) plot and kernel density plots. Figure (3) shows the trace, ACF and kernel density plots for the parameters obtained from the MCMC sampling process. The trace plots of the chains indicate a random scatter about the mean value (represented by solid line) and reflects good convergence of the MCMC process. The ACF plots display the chains for both p and σ show very low autocorrelations and generated samples are nearly independent and representative of the true posterior distribution. The kernal density plots show that the conditional marginal distributions of the parameters are appear to be symmetrical and unimodal i.e. mean can be taken as the best estimate for the parameters.

Table 7. Descriptive statistics									
Min	Min Q1 Medium Mean Q3 Max Skewness Kurtosis Sd								
12.00	12.00 54.75 70.00 99.82 112.75 376.00 1.79624 2.61444 81.11795								

Table 8. MLEs, Neg log-likelihood and Goodness-of-fit test Statistics									
Distribution	MLEs	-ln L	K-S	p-value					
M-W	2 100504 237 828567	300 4254	0 1000	0 4553					
(α=0.1, β=1.0)	2.177374, 237.020307	370.4234	0.1009	0.4355					
WD	1.3925, 110.3530	397.1479	0.14551	0.09479					
GD	2.0812, 0.0209	394.2476	0.1381	0.128					
EED	2.4842, 0.0170	393.1106	0.13244	0.1599					
M-E	3.5642, 6.1615, 0.010	403.4448	0.21213	0.0031					

Table 9. Information Criterion									
Distribution AIC BIC CAIC HQIC									
M-W	784.8509	789.4042	785.0248	786.6635					
WD	798.2958	802.8491	798.4697	800.1085					
GD	792.4952	797.0485	792.6691	794.3079					
EED	790.2212	794.7745	790.3951	792.0339					
M-E	812.8897	819.7197	813.2426	815.6087					

Table 10. Estimates of parameters, survival and hazard functions with 95%ACI/HPD credible intervals (in bracket) for survival times (in days) of guinea pigs									
Method	p	σ	S(t)	h(t)					
MLE	2.1996 (1.8591, 2.5401)	237.8286 (190.8541, 284.8030)	0.5642	0.0142					
Bayesian (MCMC)	2.168671 (1.8451, 2.4966)	244.645244 (198.4372, 297.0932)	0.5702	0.0138					
Bayesian (TK)	2.168176	237.8286	0.5705	0.0116					

Figure 1. (a) Box plot, (b) TTT plot and (c) KM Survival Plot for the data

Figure 2. Fitting plot of M-W distribution to empirical data

Figure 3. Trace plot, ACF plot and histogram with kernel density plots of the parameters

6. Concluding Remarks

This article studies the Bayesian estimation of the parameters and reliability functions of M-W distribution when parameters α and β are known. The ML estimates and ACIs are obtained of unknown parameters. For Bayes estimates, the prior belief is considered by the independent gamma informative and non-informative priors. Bayes estimates are computed under SELF using TK method and MCMC methods. The M-H algorithm is used to generate MCMC samples of parameters and to compute credible intervals. The performance of both estimators is compared by a monte carlo simulation study. The study shows that bayes estimates using informative priors obtained from MH algorithm have minimum MSE than ML and the Bayes estimates using TK method under both informative and non-informative priors. Next, we analysed a real set of observations to implement the discussed estimation methods that provided satisfactory results under Bayesian approach. Thus, we recommend to use Bayes estimation with some prior information or a suitable non-informative prior for more efficient results.

References

- Aslam M, Afzaal M, Bhatti MI (2021) A study on exponentiated Gompertz distribution under Bayesian discipline using informative priors. Stat. Transit. New Ser. 22(4): 101– 119.
- Bastan F, MirMostafaee SMTK (2019) Approximating Bayes Estimates by Means of the Tierney Kadane, Importance Sampling and Metropolis-Hastings within Gibbs Methods in the Poisson-Exponential Distribution: A Comparative Study. Iranian Journal of Operations Research 10(2), 62-77.
- Bjerkedal T (1960) Acquisition of Resistance in Guinea Pigs Infected with Different Doses of Virulent Tubercle Bacilli. American Journal of Hygiene. 72, 130-148. https://doi.org/10.1093/oxfordjournals.aje.a120129.
- Chaturvedi A (2024) Randomly Censored Kumaraswamy Distribution. Journal of Statistical Theory and Applications 23:1–25. https://doi.org/10.1007/s44199-023-00068-2
- 5. Chen MH, SHAO QM (1999) Monte Carlo estimation of Bayesian credible and HPD intervals. Journal of Computational and Graphical Statistics 8(1): 69–92.
- Dey S (2012) Bayesian Estimation of the Parameter and Reliability Function of an Inverse Rayleigh Distribution. Malaysian Journal of Mathematical Sciences 6(1): 113-124.
- 7. Fletcher R (1987) Practical methods of optimization, 2nd edn. Wiley, New York.

- Ghitany ME, Al-Mutairi D, Balakrishnan N, Al-Enezi LJ (2013) Power Lindley distribution and asso ciated inference. Comput Stat Data Anal 64:20–33. https://doi.org/10.1016/j.csda.2013.02.026.
- 9. Hastings W.K(1970) Monte Carlo sampling methods using Markov chains and their applications. Biom etrika S7, 97–109.
- 10. Ijaz M, Mashwani WK, Belhaouari SB(2020) A novel family of lifetime distribution with applications to real and simulated data. PLoSONE15(10):e0238746 https://doi.org/10.1371/journal.pone.0238746.
- 11. Kumawat H, Modi K. & Nagar P (2024) Modi-Weibull Distribution: Inferential and Simulation Study. Ann. Data. Sci. 11(2024): 1975–1999 https://doi.org/10.1007/s40745-023-00491-3.
- Kumawat H, Nagar P (2024) On Modified-Weibull Distribution Under Left Censoring.
 2024 International Conference on Artificial Intelligence and Emerging Technology (Global AI Summit), Greater Noida, India. 1348-1353, 10.1109/GlobalAISummit62156.2024.10947937.
- Kundu D, Gupta RD (2008) Generalized exponential distribution: Bayesian estimations. Computational Statistics & Data Analysis 42(4):1873-1883. https://doi.org/10.1016/j.csda.2007.06.004
- Kundu D, Howlader H (2010) Bayesian inference and prediction of the Inverse Weibull distribution for Type-II censored data Computational Statistics and Data Analysis 54(2010):1547:1558.
- 15. Kundu, D and Pradhan B (2009) Bayesian inference and life testing plan for GE distribution. Sci. China A 52(6) : 1373 1388. 10.1007/s11425-009-0085-8.
- 16. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equations of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092.
- 17. Modi K (2021) Power exponentiated family of distributions with application on two real-life data sets. Thailand Statistician 19(3):536–546.
- 18. Modi K, Kumar D, Singh Y (2020) A new family of distribution with application on two real data sets on survival problem. Sci Technol Asia 25(1):1–10 15.
- Mudholkar GS, Srivastava DK (1993) Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE Trans Reliab 42(2):299–302. https://doi.org/10.1109/24.229504
- 20. Robert C, Casella G (2004). Monte Carlo Statistical Methods. Springer Science & Business Media, New York.
- 21. Singh SK, Singh U. Kumar D. (2013). Bayesian estimation of parameters of inverse Weibull distribution. Journal of Applied statistics 40(7):1597–1607.
- 22. Smith FM, Roberts GO (1993) Bayesian Computation via the Gibbs Sampler and Related Markov Chain Monte Carlo Methods. J. R. Statist. Soc. B 55(1): 3-23.
- 23. Tierney L, Kadane JB (1986). Accurate approximations for posterior moments and marginal densities. Journal of the American Statistical Association, 81(393), 82–86.